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ABSTRACT
Densely interacting regions of biological networks often cor-
respond to functional modules such as protein complexes.
Most algorithms proposed to uncover modules, however, pro-
duce one clustering that only reveals a single view of how the
cell is organized. We describe two new methods to find en-
sembles of provably near-optimal modularity partitions that
lie within a heuristically constrained search space. We also
show how to count the number of solutions in this space that
exist within a bounded modularity range. We apply our al-
gorithms to a protein interaction network for S. cerevisiae
and show how fine-grained differences between near-optimal
partitions can be used to define robust communities. We
also propose a technique to find structurally diverse near-
optimal solutions and show that these different partitions
are enriched for different biological functions. Our results
indicate that near-optimal solutions can represent alterna-
tive and complementary views of the network’s structure.

Categories and Subject Descriptors
G.2.2 [Discrete Mathematics]: Graph Theory—network
problems; H.2.8 [Database Management]: Database Ap-
plications—data mining ; H.3.3 [Information Storage and
Retrieval]: Information Search and Retrieval—clustering
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1. INTRODUCTION
Network clustering has become a very popular tool used

to understand the structural organization of complex net-
works. Although the definition of a meaningful cluster can
vary across contexts, a network cluster is typically thought
of as a set of tightly interacting nodes with relatively few
external edges. These sets of nodes correspond to the net-
work’s structural organs, which lay the foundation for many
processes occurring over these networks. For example, in
social and information networks, clustering has been used
to uncover dynamic relationships and communities [21, 15],
and to understand how knowledge propagates through the
network [25, 39]. In computational biology, network cluster-
ing has been used to understand and generate hypotheses
about how thousands of genes and proteins interact to carry
out important biological processes. In protein-protein inter-
action (PPI) networks, for example, groups of functionally
related proteins (such as protein complexes) often appear
as dense subgraphs and therefore correspond well with the
notion of a network cluster. Automatically uncovering these
functional modules can lead to hypotheses about the cellular
role of unannotated proteins [5, 31].

Most graph clustering algorithms proposed only produce
a single partition in accordance with some objective func-
tion [22, 14, 9, 40, 30, 11]. A growing body of research, how-
ever, suggests that multiple complementary network clus-
terings often exist [16, 2, 36]. Recent work has also empir-
ically shown that near-optimal partitions can be useful for



many tasks [29]: in particular, they can be used to differen-
tiate between core and peripheral community members by
looking at which nodes more readily change their cluster-
membership [13, 26]; they can be used to find robust com-
munities, i.e. sets of nodes that remain co-clustered across
many partitions; they can be used to gauge confidence in the
optimal solution based on the quality of nearby solutions;
and they can be used to mitigate noise in the network [29].

Here, we consider the popular modularity [34, 33] opti-
mization function that has been used in various network
domains [38, 24]. We propose a new approach to find prov-
ably near-optimal modularity clusterings that can be derived
from a heuristically structured search space (for example,
the Fast Greedy (FG) hierarchical clustering tree [7]). By
adding constraints when selecting successive solutions, we
can systematically explore the solution space and can prove
that the ith solution found by our algorithm is an ith-best
solution that is compatible with the tree. We also show how
to count the number of partitions that have a modularity
lying within a bounded range given this tree. Our results on
a PPI network for the yeast S. cerevisiae show that there
exist many nearly identical partitions with similar modular-
ity, which confirms the modularity degeneracy problem [17]
for this application. Although these strictly near-optimal
partitions can be used to identify robust communities, it is
also important to quickly sample highly modular and struc-
turally dissimilar partitions. We introduce a repulsion term
into the modularity optimization function, which allows us
to strike a balance between modularity and diversity of so-
lutions. When tested on the PPI network, we find that the
diversified partitions are indeed enriched for different biolog-
ical functions, and therefore represent alternative and com-
plementary views of the network’s organization.

2. RELATED WORK
Several algorithms have been proposed to find high mod-

ularity network clusterings [34, 33, 7, 1, 35, 11]. Most of
these algorithms return only a single clustering, though there
are some exceptions: Navlakha and Kingsford [29] extend
the integer linear programming formulation of Agarwal et.
al. [1] to incorporate diversity constraints into the modu-
larity maximization function. Their approach, however, re-
quires solving an integer program which does not scale to
larger networks. Other approaches find multiple modularity
solutions using heuristic techniques [27, 18] (such as sim-
ulated annealing) which provide no theoretical guarantee
about the optimality of the solutions found in polynomial
time. This makes it impossible to pinpoint where exactly
they lie in the solution landscape with respect to the (po-
tentially many) undiscovered solutions.

Bae and Bailey [2] propose a technique for finding alter-
native clusterings in hierarchical data structures, but their
technique requires that the alternative clusterings have the
same number of clusters as the optimal clustering. More-
over, if two nodes are originally in the same cluster, they
must not be placed in the same cluster in a subsequent clus-
tering. This latter requirement can be too restrictive in net-
work clustering scenarios when certain sets of nodes (e.g.
cliques) should not be disturbed, or if the goal is to look for
more subtle differences between solutions.

Gondek and Hofmann [16] use the coordinated conditional
information bottleneck to find non-redundant clusterings.
However, their approach is probabilistic, not easily adapt-

able to network clustering problems (such as modularity),
and requires the number of clusters to be given a priori. Qi
and Davidson [36] systematically transform the input data
so that the same algorithm applied to the transformed data
returns a new clustering. In contrast, we explicitly constrain
for quality and diversity in the clustering process itself. Fur-
thermore, like many other approaches, they report only a
single alternate solution, whereas we are interested in gen-
erating large ensembles.

3. ALGORITHMS

3.1 Generating provably near-optimal
modularity partitions

We start with an input network G (e.g. Figure 1A) and
a structured reduction of the space of possible partitions in
the form of the Fast Greedy (FG) [7] hierarchical clustering
of G (Figure 1B). The FG clustering starts with each node
in its own cluster, and in each step merges the pair of clus-
ters that yields the largest positive gain in modularity [34].
Once there no longer exists a positive pair, the standard
algorithm stops and returns the current set of clusters and
its modularity (which ranges from −1 to 1 [4]). We instead
construct the entire hierarchical tree decomposition formed
by continuing to merge the pair of clusters that yields the
least negative modularity.

Each internal tree node x corresponds to a cluster con-
sisting of the leaves of the tree rooted at x (denoted by
L(x)). L(Root) contains all the network nodes, and for
leaves, L(x) = x. We define a quality score, q(x), for each
tree node x equal to the modularity of the cluster induced
by x. In particular:

q(x) =
1

2m

X
u,v∈L(x)

„
Auv −

kukv
2m

«
, (1)

where A is the adjacency matrix of G, ku is the degree of
node u in G, and m is the number of edges in G [34]. The
total modularity Q for a partition is the sum of each cluster’s
modularity contribution. Any non-overlapping partition of
the nodes consistent with the heuristic tree corresponds to
selecting a set of nodes in the tree, called a node-cut, such
that each leaf has exactly one ancestor among the chosen
nodes. Grouping together leaves with the same ancestor in
the node-cut K corresponds to a partition of the nodes into
|K| non-overlapping clusters. To find an optimal modularity
partition from the tree we want to find the node-cut with
the highest induced modularity:

argmax
K

X
x∈K

q(x). (2)

Despite there being an exponential number of possible node-
cuts in the tree, we can find the one representing the highest
modularity partition in linear time using dynamic program-
ming [32]. The dynamic programming algorithm considers
a tree node x and either chooses it or chooses the best so-
lution of each of the subtrees rooted at the children of x,
recursively. In particular, for each node x we set:

q∗(x) = max

(
q(x) case I

q∗(x`) + q∗(xr) case II.
(3)

Here, x` and xr indicate the left and right children of x,
respectively. When x is a leaf, only case I applies. By back-



tracking from the root node, we can find the nodes chosen
in the optimal cut, and can thus produce the optimal mod-
ularity clustering compatible with the tree.

To find the second-best tree-compatible solution, the idea
is to systematically “rattle” the previous solution so that
the subsequent one is forced to have a minimally different
modularity. Let the optimal tree-derived partition P1 consist
of r clusters {C1

1 , C
2
1 , · · · , Cr1}. To find the next best solution

(P2), we observe that at least one cluster in P1 must not
appear exactly in P2. That is, at least one cluster of P1 must
be perturbed in some way — either splitting the cluster into
multiple clusters, or by merging the cluster with another.

To explore each of these possibilities, we introduce the
idea of forbidden nodes. Let tree node x be marked as for-
bidden if x is not allowed to be part of a node-cut (effectively
setting q(x) = −∞). By disallowing a node to be part of the
next partition, the dynamic programming procedure will be
forced to choose the best modification of the partition that
does not involve x. To deal with the uncertainty of which
of the r clusters to perturb, we try all of them; i.e. we itera-
tively mark each of the r clusters of P1 as forbidden, re-cut.
Each of the r solutions found by this procedure are placed
on a priority queue U , ordered by their modularity. The
partition on the top of the queue is a second-best solution
and it is dequeued from the priority queue. It is important
to note that solutions that were not picked in the current
step remain in U because these solutions can emerge later
as the next best solution.

Figure 1 shows an example of finding the second-best par-
tition given a network (Figure 1A) and the Fast Greedy hier-
archical tree (Figure 1B). Figure 1C–E show the three can-
didate partitions found by successively marking each cluster
in the optimal partition as forbidden and re-cutting the tree
using the dynamic programming algorithm. Notice that the
candidate partitions are perturbed from the optimal parti-
tion in different ways: In Figure 1C,E the next best solution
chooses the forbidden node’s descendants, whereas in Fig-
ure 1D it chooses the node’s ancestor (thereby merging two
clusters). Amongst these candidates, we choose the one with
the highest modularity. In the example, the provably second
optimal clustering is the one shown in Figure 1C.

To find a provably ith-best partition, we iterate this pro-
cess. We successively mark each cluster in Pi−1 as forbidden
(r, 4, s, t in the example when i = 3) in addition to mark-
ing as forbidden the nodes that were forbidden when finding
Pi−1 (b in the example), and re-cut. This gives us |Pi−1|
(not necessarily unique) new candidate partitions which are
added to U . We then report the solution at the top of U
(the one with the highest modularity). This may be one
of the |Pi−1| solutions generated in this step, or a solution
generated in a previous step and which already lies in U .

To find the ith solution our algorithm takes O(|Pi−1|n +
|Pi−1| log(|U |)) time, where n is the number of nodes in the
network. The first term corresponds to the number of addi-
tional candidates considered, each taking O(n) time to find.
The second term corresponds to the time required to add
the candidates to the priority queue U .

Figure 1F shows the candidate solutions stored in U for
the example. The first row shows that initially no nodes were
marked as forbidden, which resulted in partition {b, s, t}.
Rows 2–4 show the three candidates considered in Figure 1C–
E. Rows 5–8 and 9–12 shows the additional candidates con-
sidered when finding P3 and P4, respectively.

Algorithm 1 Modu-Cut(T, s)

1: Partitions ← [ ] # List of near-optimal partitions
2: U ← [ ] # Modularity priority queue
3: i← 0
4: (q, cut-nodes)← cut(T, {}) # Optimal solution
5: U ← push(q, cut-nodes, {}) # Add solution to the queue
6: while i < s do
7: (q, cut-nodes,F)← U.pop() # Next best solution
8: P [i]← cut-nodes # Save the solution
9:

10: # Iteratively perturb the solution
11: for all u ∈ cut-nodes do
12: (q, cut-nodesu)← cut(T,F ∪ {u})
13: U ← push(q, cut-nodesu,F ∪ {u})
14: end for
15: i← i+ 1
16: end while
17: return Partitions

Note: The function cut(T,F) returns the modularity (q)
and partition (cut-nodes) of the best solution in T with
nodes in F marked as forbidden.
Note: For brevity, we omit pseudocode for handling dupli-
cate solutions.

We call this algorithm Modu-Cut. Pseudocode is shown
in Algorithm 1 and a proof of its correctness is given in the
Appendix. Although we focus on modularity, our technique
is applicable to finding near-optimal solutions from any hi-
erarchical tree decomposition where the objective function
is decomposable into the sum of each cluster’s contribution
(e.g. partition stability defined using random walks [8, 23]).

3.2 Counting the number of solutions within
a bounded modularity range

The basic dynamic programing algorithm can be applied
to count the number of solutions compatible with the clus-
tering tree T that have a modularity within a given range
(B`, Bu). To do this, assume all the node weights are inte-
gers. This can be achieved by multiplying the modularity
values by a large constant (e.g. 4m2 for unweighted net-
works).

Define a function Count(x, b) to equal the number of node-
cuts in the subtree of T rooted at x that have weight equal
to b. When x is a leaf x, then Count(x, b) = χ(q(x) = b),
where χ(q(x) = b) is 1 if q(x) = b and 0 otherwise. When x
is not a leaf, we have:

Count(x, b) = χ(q(x) = b)+

µ′X
i=µ

Count(x`, i)×Count(xr, b−i),

(4)
where x` and xr are the left and right children of node x
and where µ and µ′ are the minimum and maximum pos-
sible modularities achievable for any partition of any sub-
tree (computed using the same dynamic programming al-
gorithm from Section 3.1 with min and max, respectively).
The right-hand side enumerates all possible ways of divid-
ing up the target modularity (b) between the left and right
subtrees. The function Count can be computed starting
at the leaves and proceeding up to the root. The number
of solutions within a range (B`, Bu) can be computed byPBu
i=B`

Count(Root, i). The running time is O(n(µ′ − µ)2).
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Figure 1: Overview of the Modu-Cut algorithm. (A) The input network. (B) The hierarchical clustering of the
network produced by the Fast Greedy algorithm [7]. Bold tree nodes correspond to the optimal modularity
node-cut. (C–E) Three candidate near-optimal partitions considered by our method when finding the second-
best solution. Each candidate corresponds to marking a different cluster from the optimal clustering as
forbidden. Solution (D) has the highest modularity (0.331), which is the provably second best clustering
from the tree. (F) The modularity priority queue showing the solutions considered thus far along with the
corresponding nodes marked as forbidden.

We call this algorithm Modu-Count.
The dependence of the running time on the magnitudes

of the modularities is unavoidable unless P = NP without
exploiting additional properties of the modularity function.
This follows by reducing the Subset Sum problem to our
problem, Tree Weighted Cut Count: counting the num-
ber of cuts of a given value in a binary, node-weighted tree.
Given an instance “{x1, . . . , xN}, B > 0” of Subset Sum,
create an instance of Tree Weighted Cut Count with
2N leaves as shown in Figure 2. (Although this is not a bi-
nary tree, it can be converted into one by replacing the root
node with a large enough binary tree.) In the constructed
tree, every internal node u has weight q(u) = 0, and half
the leaf nodes have q(u) = 0. This tree has a node-cut of
weight B if and only if there is a subset of {x1, . . . , xN}
that sums to B, solving the Subset Sum problem. Hence,
the general Tree Weighted Cut Count problem is NP-
hard, and the pseudopolynomial Modu-Count algorithm is
justified. For the special case of a simple, unweighted net-
work, the multiplicative constant of 4m2 results in integers
for all possible partitions of a network. Since m can never
be greater than n2, and the number of nodes in the tree is
2n − 1, Modu-Count runs in polynomial time for simple,
unweighted networks.

3.3 Constraining for more diverse solutions
If there are many near-optimal solutions to wade through,

the techniques of Section 3.1 can only be used to track
minute differences between near-optimal partitions. Although
these differences can be exploited to uncover subtle struc-
tural differences between solutions [29], it would be difficult

0

0 0 0 0

0 0 x3 0x1 x2 0xN

Figure 2: The instance of Tree Weighted Cut Count
used in the reduction from Subset Sum.

to use this technique to find highly modular and highly dif-
ferent solutions without slowly traversing the entire partition-
space. Finding diverse partitions, however, is important be-
cause they offer distinct views of the network’s structural
composition. In this section, we explicitly constrain for
diversity of partitions by introducing a repulsion term to
Equation (1) that biases against solutions that are too sim-
ilar to the optimal solution, P1.

To define the distance between two solutions or partitions,
we use the variation of information (VI) [28]. We use this
measure, among the many others proposed to compare clus-
terings [28], because it is information-theoretic, a true metric
in partition-space (non-negative, symmetric, obeys the tri-
angle inequality), and importantly, can be written such that
the total distance between two partitions is the sum of each



cluster’s contribution. It is defined as follows:

VI(P1, PK)
.
= 2H(P1, PK)−H(P1)−H(PK), (5)

where H(PK) and H(P1) are the entropies associated with
partitions PK and P1 (represented as random variables of
cluster assignment), and H(P1, PK) is the joint entropy of
PK and P1. The measure ranges from 0 (identical partitions)
to log(n), where n is the number of nodes in the network.
Because VI is decomposable (like modularity), we can mod-
ify the function q(x) in Equation (1) to include x’s contri-
bution towards the VI distance from P1 to the cut-induced
clustering PK . Over all cuts K, H(P1) remains constant and
therefore we can ignore it. A cluster x contributes

Node-VI(x)
.
= p(x) log p(x)− 2

X
C∈P1

p(x,C) log p(x,C) (6)

towards the total VI distance, where p(x) = L(x)/n, which
is the percentage of total nodes in cluster x, and p(x,C) =
|L(x) ∩ C|/n, which is the fraction of total nodes in cluster
L(x) that are also in cluster C. The two terms of Equa-
tion (6) correspond to x’s contribution to the overall entropy
of PK , and x’s contribution to the joint entropy of P1 and
PK , respectively. We incorporate the node’s VI contribution
into Equation (1) as:

q′(x) = q(x) + αNode-VI(x)/ log(n), (7)

where q(x) is the modularity contribution of tree node x
as given in Equation (1), and where α is a parameter that
governs how much weight we place on the VI term. The
Node-VI term acts as a repulsion factor that pushes away
from solutions that are too similar to P1. We normalize the
VI value by its maximum (log(n)) so that the modularity
and VI measures lie on roughly the same scale.

We replace the q(x) values on the tree with these q′(x) val-
ues and use the dynamic programming algorithm of Equa-
tion (3) to find the cut with the highest weight. For any
node-cut K, we have:X

x∈K

q′(x) = Q(PK) +
α

log(n)
VI(P1, PK). (8)

That is, the weight of a node-cut K equals the modularity
of PK plus the the normalized VI distance of PK to P1. To
generate an ensemble of diverse solutions, we find a single
solution at each value of α and iterate for varying values
of α, ignoring all previous solutions found. Each solution
found is guaranteed to be one compatible with the tree that
is optimal according to the chosen α trade-off. Though not
guaranteed, larger α values will typically yield solutions that
are more distinct from the optimal solution.

Equation (7) offers one approach to balance between the
magnitude of modularity of PK and its amount of differ-
ence from P1. An alternative formulation would be to use
hard constraints that forbids solutions that are too similar
to previous solutions. Here, we use soft constraints so that
the algorithm naturally uncovers a trade-off between the two
optimization criteria.

We call this algorithm Modu-Mix.

4. EXPERIMENTS
We tested our algorithms on a high-confidence protein-

protein interaction (PPI) network for the yeast S. cerevisiae,
whose largest connected component contains 1, 647 proteins

and 2, 518 interactions [41]. First, we show how our Modu-
Cut algorithm (Section 3.1) discovers many similar near-
optimal solutions, which can be used in conjunction to dif-
ferentiate between robust and non-robust communities. Sec-
ond, we empirically quantify the modularity degeneracy prob-
lem [17] by counting the number of partitions with a modu-
larity within a bounded modularity range using our Modu-
Count algorithm (Section 3.2). Third, we incorporate a dis-
similarity term into the modularity maximization function
to uncover ensembles of high-quality and diverse partitions
using our Modu-Mix algorithm (Section 3.3). All experi-
ments were run on 2.4 Ghz machine with 4 GB of RAM.

4.1 Near-optimal PPI network partitions
We ran Modu-Cut (Section 3.1) on the largest compo-

nent of the yeast PPI network. It took 6.4 minutes to gen-
erate the first 300 provably near-optimal tree-compatible
solutions. Figure 3A shows how slowly the modularity of
near-optimal solutions decreases with respect to the optimal
partition (P1). P300 has a modularity that is only 0.00019
less than the optimal (0.73884 vs. 0.73865), suggesting ex-
treme uncertainty in the optimal solution. These solutions
are very structurally similar: Figure 3B plots the normal-
ized variation of information [28] distance between P1 and
Pi, 1 ≤ i ≤ 300. The VI distance between the near-optimal
solutions and the optimal does not necessarily monotoni-
cally increase because, from solution to solution, the per-
turbed cluster can be of different size and can be either split
or merged, each yielding different changes in VI. However,
there is a general trend of increasing VI distance with sub-
sequent solutions, as expected (R-value of 0.47).

Subtle differences in near-optimal solutions can be used
to differentiate between robust and non-robust communi-
ties. Figure 4 shows the percentage of times each cluster in
P1 appears exactly in the 300 near-optimal partitions (Jac-
card coefficient of 1). Clusters that remain exactly intact
are suggestive of a resilient community that has withstood
the pressure of additional constraints. The yellow bars of
the plot highlight the clusters that remain unperturbed in
95% of the near-optimal partitions. The non-robust clus-
ters (green bars) are likely to contain many nodes that are
peripherally connected to the core members of the cluster.
Such dynamics would not be captured by any single-solution
approach.

4.2 Counting the number of solutions
To understand how partitions of various quality are glob-

ally distributed in the modularity landscape, we used our
Modu-Count algorithm (Section 3.2) to count the number
of solutions in the yeast PPI that lie within a given range of
modularity. It took less than 2 minutes to count the number
of solutions with multiplicative factor 1000. Figure 5 exper-
imentally confirms the modularity degeneracy problem [17],
which claims that there can be an exponential number num-
ber of equally valid, high modularity partitions. In particu-
lar, we find that there are exactly
4,068,367,271,231,892,000,117,969,958,274 (i.e. ∼ 4 × 1030)
tree-based partitions with modularity between 0.700 and
0.739 (the maximum modularity). Figure 5 also shows that
the degeneracy increases with lower modularity values be-
fore decreasing again near the very non-modular solutions.

We contrasted the shape of the modularity-count curve
for the PPI network with the curve for a randomly rewired



Figure 3: Comparison of how modularity and VI dis-
tances change across the modularity landscape for
the Modu-Cut algorithm. (A) Modularity slowly de-
creases with each subsequent near-optimal solution.
(B) The near-optimal solutions are also structurally
very similar to the optimal solution, measured using
the VI distance.

Figure 4: Near-optimal solutions can be used to dif-
ferentiate between robust and non-robust communi-
ties. The x-axis shows the cluster ID of each cluster
in the optimal solution. The y-axis shows the per-
centage of the first 300 near-optimal solutions that
contain the cluster exactly. The yellow bars high-
light the clusters which exactly appear in ≥ 95% of
the near-optimal partitions.
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Figure 5: The Modu-Count algorithm applied with
a multiplicative constant of 1000 for four networks of
the same size and similar density: Barabási-Albert
(γ = 1), Rewire, PPI, and Erdös-Renyi (p = 0.0025).
The optimal modularity for the PPI network corre-
sponds to > 30, 000 different solutions all with mod-
ularity 0.738, and this number increases significantly
as the modularity decreases. To contrast, there are
only a few thousand solutions at the optimal value
for the Erdös-Renyi random graph, and < 1000 solu-
tions at the optimal value for the rewired graph.

network (“Rewire” in Figure 5), a Barabási-Albert (BA) [3]
random network, and an Erdös-Renyi (ER) random network
with the same number of nodes. The parameters (p = 0.0025
for ER and γ = 1 for BA) were chosen to produce random
networks with density similar to the PPI. The rewired net-
work’s curve is similar to the PPI network’s curve, yet at
the optimal modularity only 768 solutions exist compared
to 32,256 solutions for the PPI network. The ER network
has a much lower maximum modularity due to its inher-
ently random nature of adding links and has 4,032 solutions
at maximum modularity. Interestingly, the BA network’s
curve is similar to the PPI network’s, which is additional
evidence of the coherence of the BA model with PPI net-
works [10]; it also suggests that modularity degeneracy is
not intrinsic to the PPI network alone.

These results suggest that, for even one heuristically con-
strained search structure (the FG tree), the modularity land-
scape offers a plethora of reasonable solutions and that full
confidence should not be placed in a single partition.

4.3 Constraining for modularity and diversity
Finally, we ran our Modu-Mix algorithm on the PPI net-

work to try and discover a mélange of non-redundant par-
titions. Following the procedure outlined in Section 3.3, we
added a repulsion term — the variation of information —
to the quality score of each tree node as a means to pe-
nalize solutions that are similar to the optimal. The level
of diversity is governed by a single paramter, α, which we
varied from 0.0 to 3.0 in steps of 0.2. Each value yielded a
different partition. It took 0.1 minutes to generate the 15
total partitions. Figure 6 presents the change in modularity
and VI of each solution with respect to the optimal solution.



Figure 6: For the Modu-Mix algorithm: (A) Each α
value corresponds to a different solution. Modular-
ity decreases quickly with increasing diversity con-
straints (α). (B) Increasing α also yields structurally
diverse solutions. Taken together, with only a 10%
drop-off in modularity, we can find a new solution
that is 25% different structurally (α = 0.8).

The curve decays much more rapidly than the corresponding
plot for the Modu-Cut algorithm (Figure 3A), which shows
that we can find diverse and reasonable solutions much more
quickly than before. In particular, with only a 10% drop-off
in modularity, we can get a solution that is 25% different
structurally (α = 0.8).

A common method to gauge the value of a biological net-
work partition is to test each of its clusters for functional
enrichment. Clusters consist of nodes (proteins) that en-
gage in one or more biological functions in the cell, such
as protein synthesis, regulation of metabolism, or transcrip-
tion [19]. Sets of nodes engaged in a common function often
appear close together in PPI networks [6, 37, 20].

To evaluate the biological usefulness of our multiple parti-
tions, we tested how well the clusters found in each partition
match known biological functions. This is a useful task be-
cause the function of many proteins, even in well-studied
species such as yeast, remains unknown. As a result, com-
putational approaches have flourished as a means to trans-
fer annotations (association with a biological function) to
an unannotated protein based on the annotations of its co-
clustered neighbors [5, 31] in the PPI network. To gauge
each partition’s usefulness for this task, we test each of its
clusters for enrichment of MIPS functions [19] using the hy-
pergeometric test (strict p-value < 10−7), ignoring small
clusters with < 3 proteins and correcting for multiple hy-
potheses. With this test, a cluster is said to be enriched for
a biological function f if the probability of obtaining the ob-
served intersection size (or greater) between the set of genes
in the cluster and the set of genes known to be associated
with f is less than 10−7.

Table 1 shows how the multiple partitions found by our
Modu-Mix algorithm provide different views of the PPI net-
work’s functional organization. Each value of α corresponds
to a single solution derived using Equation (7). Enriched(α)
corresponds to the number of annotations enriched in the
solution. Cumulative(α) corresponds to the total number
of unique enriched annotations in all solutions seen up to
that point. Interestingly, the optimal modularity partition
(α = 0) is enriched for only 3 protein functions. The so-

α Q VI Enriched(α) Cumulative(α)
0.0 0.7388 0.000 3 3
0.2 0.7304 0.099 4 5
0.4 0.7146 0.157 2 6
0.6 0.7061 0.174 3 7
0.8 0.6474 0.255 13 18
1.0 0.5868 0.323 24 27
1.2 0.5599 0.347 29 32
1.4 0.5309 0.369 32 35
1.6 0.5011 0.390 35 37
1.8 0.4465 0.421 37 39
2.0 0.4091 0.441 36 39
2.2 0.3794 0.455 38 42
2.4 0.3598 0.463 40 43
2.6 0.2679 0.499 10 43
2.8 0.2590 0.503 9 43
3.0 0.2544 0.504 11 44

Table 1: Ensembles of partitions can reveal multiple
views of biological networks. The first column is
the α value used in Equation 7. The second and
third columns contain the modularity of the solution
and its VI distance from the optimal, respectively.
The fourth column, Enriched(α), is the number of
functions enriched in the solution. The fifth column,
Cumulative(α), is a cumulative sum of the number of
unique functions enriched in all previous solutions.
For example, the solution at α = 0.8 was enriched for
13 annotations, 11 of which were not enriched in any
of the previous solutions (α < 0.8).

lution at α = 0.2 is enriched for four annotations, two of
which (endocytosis and general transcription activities) were
new relative to the enriched annotations in the optimal so-
lution (lysosomal and vacuolar protein degradation, auto-
proteolytic processing, and cyclic nucleotide binding). The
first several solutions each offer only a few enriched anno-
tations; however, at α = 0.8 we see a spike in the number
of enriched functions. This suggests that the algorithm has
found a new, perhaps more relevant, region in the modular-
ity landscape that has high modularity and that corresponds
better to the biological processes underlying the network.
This space is marked with a greater number of smaller-sized
modules, chosen by selecting more clusters lower in the tree.
We also observe that Cumulative(α) levels off as α increases
further and that this happens when the modularity of the
network is quite low. However, by itself, the single solution
at α = 3.0 has more enriched functions than the optimal
modularity partition. Taken together, this ensemble of solu-
tions provides meaningful and diverse views of how proteins
form clusters to carry out fundamental cellular tasks.

5. CONCLUSIONS
We described two new methods to find ensembles of highly

modular tree-derived network partitions using a modified
modularity maximization function. The proposed Modu-
Cut algorithm can be used to enumerate provably near-
optimal partitions that are in agreement with a heuristi-
cally constructed tree. These partitions were used collec-
tively to distinguish between robust and non-robust com-
munities. We showed how to count the number of solu-
tions within a bounded modularity range (Modu-Count)
and found an astronomical number of highly modular solu-



tions in the yeast PPI, reconfirming and further quantify-
ing the modularity degeneracy problem. To quickly uncover
highly modular and highly different partitions, we incorpo-
rated diversity constraints (Modu-Mix) and showed how
the resulting partitions were enriched for different biologi-
cal annotations, which suggests that alternative clusterings
may be useful for improved function prediction. Our results
suggest that these algorithms can produce ensembles of par-
titions that offer alternative and complementary views of the
network’s structure.

As future work, it would be interesting to experiment with
hard constraints (instead of soft constraints) as an alterna-
tive way to forcefully uncover different partitions. We would
also like to experiment with other structured search spaces,
including alternative hierarchical clustering trees that cor-
respond to different regions of the clustering space.

Further, additional approaches for assessing the biological
quality of various near-optimal partitions need to be devel-
oped. While the hypergeometric test used here is a standard
procedure used when considering function enrichment [12],
we are unaware of a statistical test of cluster enrichment
given a partition and the development of such a test would
be interesting future work.

6. AVAILABILITY
The implementation of our algorithms is open source and

available online at http://www.cbcb.umd.edu/ModuTree.
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APPENDIX
The following is a sketch of the proof of correctness of Al-
gorithm 1. For simplicity, we ignore the complication of
handling ties in this sketch. Let C(F ) denote the set of so-
lutions compatible with the tree that do not use any nodes
in the set F . Let F(P ) be the set of forbidden nodes in
effect when P was added to the priority queue U . Let
Expand(P ) = {F(P ) ∪ {x} : x ∈ P} for any node-cut P .

Lemma 1.
S
F∈Expand(Pi+1) C(F ) = C(F(Pi+1))\{Pi+1}.

Proof. The left-hand side is a subset of the right-hand
side because C(F(Pi+1)∪{x}) ⊆ C(F(Pi+1)) with the caveat
that Pi+1 can not exist in C(F(Pi+1)) by definition. Let Y
be any solution in C(F(Pi+1)) \ {Pi+1}. Because Y 6= Pi+1,
there must exist some cluster x′ ∈ Pi+1 such that x′ /∈ Y .
That means Y ∈ C(F(Pi+1) ∪ {x′}), which corresponds ex-
actly to one of the C(F ) terms on the left-hand side.

Let S<Q(Pi) be the set of all solutions with modularity

strictly less than Q(Pi). Let L(U i) be the set of forbidden
node sets in U after the ith step of the algorithm. The next
theorem shows that after each iteration, the set of solutions
considered by the algorithm includes the next-best solution.

Theorem 1.
S
F∈L(Ui) C(F ) = S<Q(Pi). In other words,

the set of solutions that are compatible with the set of for-
bidden nodes in the queue U i is equivalent to the set of all
solutions with modularity < Q(Pi).

Proof by Induction.
Base case: i = 1. Let X =

S
x∈P1

C({x}), which is the
left-hand side of the theorem statement when i = 1. Let
partition Z /∈ X . Z must not be in any C({x}) in the union
defining X . Hence, for all clusters x ∈ P1, we have x ∈ Z,
and therefore Z = P1.

Induction step: We need to show thatS
F∈L(Ui+1) C(F ) = S<Q(Pi+1). After processing Pi,

the Modu-Cut algorithm proceeds by removing F(Pi)
from the priority queue, and add the solutions associated
with Expand(Pi) to U .S

F∈L(Ui+1) C(F ) can be rewritten as:0@ [
F∈L(Ui)\{F(Pi+1)}

C(F )

1A ∪
0@ [
F∈Expand(Pi+1)

C(F )

1A
Applying Lemma 1 and substituting, we can replace the

second term with C(F(Pi+1)) \ {Pi+1}:0@ [
F∈L(Ui)\{F(Pi+1)}

C(F )

1A ∪ C(F(Pi+1)) \ {Pi+1} (9)

The above expression equals
“S

F∈L(Ui) C(F )
”
\{Pi+1}. Ap-

plying the induction hypothesis, this equals S<Q(Pi)\{Pi+1}.
By definition, this in turn equals S<Q(Pi+1).

The correctness of the algorithm follows immediately from
Theorem 1. We know that the (i + 1)st solution Pi+1 is in
S<Q(Pi). By Theorem 1, Pi+1 ∈ C(F ′) for some F ′ ∈ L(U i).
Since the heap contains the best solution compatible with
every F ∈ L(U i), the heap will contain the solution Pi+1.


