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Abstract

We study the problem of distributed task allocation in multi-agent systems e.g. the division
of labor in an ant colony or robot swarm. Suppose there is a collection of agents, a collection of
tasks, and a demand vector, which specifies the number of agents required to perform each task.
The goal of the agents is to collectively allocate themselves to the tasks to satisfy the demand
vector. We study the dynamic version of the problem where the demand vector changes over
time. Here, the goal is to minimize the switching cost, which is the number of agents that change
tasks in response to a change in the demand vector. The switching cost is an important metric
since changing tasks may incur significant overhead.

We study a mathematical formalization of the above problem introduced by Su, Su, Dorn-
haus, and Lynch [21]. We prove the first non-trivial lower bounds for the switching cost.
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1 Background

Task allocation in multi-agent systems is a fundamental problem in distributed computing, and
is especially pertinent to biological distributed algorithms such as the division of labor in insect
colonies. Given a collection of tasks, a collection of task-performing agents, and a demand vector
which specifies the number of agents required to perform each task, the agents must collectively
allocate themselves to the tasks to satisfy the demand vector. This problem has been studied in
a wide variety of settings. For example, agents may be identical or have differing abilities, agents
may or may not be permitted to communicate with each other, agents may have limited memory
or computational power, agents may be faulty, and agents may or may not have full information
about the demand vector. See Georgiou and Shvartsman’s book [8] for a survey of the distributed
task allocation literature. See also the more recent line of work by Dornhaus, Lynch and others on
algorithms for task allocation in ant colonies [5, 21, 6, 18].

We consider the setting where the demand vector changes dynamically over time and agents
must redistribute themselves among the tasks accordingly. We aim to minimize the switching cost,
which is the number of agents that change tasks in response to a change in the demand vector.
The switching cost is an important metric since changing tasks may incur significant overhead.
Dynamic task allocation has been extensively studied in practical, heuristic, and experimental
domains. For example, in insect biology it has been empirically observed that demands for tasks
in ant colonies change over time based on environmental factors such as climate, season, food
availability, and predation pressure [16]. Accordingly, there is a large body of biological work
on developing hypotheses about how insects collectively perform task allocation in response to
a changing environment (see surveys [1, 19]). Additionally, in swarm robotics, there is much
experimental work on heuristics for dynamic task allocation (see e.g. [11, 20, 14, 15, 12, 13]).

Despite the rich experimental literature, to the best of our knowledge there are only two works on
dynamic distributed task allocation from a theoretical algorithmic perspective. Su, Su, Dornhaus,
and Lynch [21] present and analyze gossip-based algorithms for dynamic task allocation in ant
colonies. Radeva, Dornhaus, Lynch, Nagpal, and Su [18] analyze dynamic task allocation in ant
colonies when the ants behave randomly and have limited information about the demand vector.

2 Our setting

Before formally defining the problem statement, we outline the setting that we consider:

Objective: Our goal is to minimize the switching cost, defined as the number of agents that
change tasks in response to a change in the demand vector.

Properties of agents:

1. the agents have complete information about the changing demand vector

2. the agents are heterogeneous

3. the agents cannot communicate

4. the agents are memoryless

The first two properties specify capabilities of the agents while the third and fourth properties
specify restrictions on the agents. Although the exclusion of communication and memory may
appear overly restrictive, our setting captures well-studied models of both collective insect behavior
and swarm robotics:
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Our setting in collective insect behavior There are a number of hypotheses that attempt
to explain the mechanism behind task allocation in ant colonies (see the survey [1]). One such
hypothesis is the response threshold model, in which ants decide which task to perform based on
individual preferences and environmental factors. Specifically, the model postulates that there
is an environmental stimulus associated with each task, and each individual ant has an internal
threshold for each task, whereby if the stimulus exceeds the threshold, then the ant performs that
task. The response threshold model was introduced in the 70s and has been studied extensively
since (for comprehensive background on this model see the survey [1] and the introduction of [7]).
Our setting captures the response threshold model since agents are permitted to behave based on
individual preferences (property 2: agents are heterogeneous) and environmental factors (property
1: agents have complete information about the demand vector). We study whether models like
response threshold model can achieve low switching costs.

Our setting in swarm robotics Inspired by insect behavior, researchers have also studied the
response threshold model (which our setting captures) in the context of swarm robotics [2, 10, 23].

More generally, there is a body of work in swarm robotics specifically concerned with property
3 of our setting: eliminating communication (e.g. [22, 3, 9, 17]). In practice, communication may
be unfeasible, costly, or unlikely. In particular, it may be unfeasible to build a fast and reliable
network infrastructure capable of dealing with delays and failures, especially in a remote location.

Regarding property 4 of our setting, it is desirable for agents to not rely on memory while
performing task allocation because if robots arrive to the site at different times e.g. if a robot fails
and is subsequently replaced, a newly arriving robot should ideally be able to determine what task
to work on simply by observing the environment.

Concretely, our setting for dynamic task allocation in swarm robotics may be applicable to
disaster containment (e.g. for forest fires [17] or a oil spills [24]), agricultural foraging, mining,
drone package delivery, and environmental monitoring [20].

3 Problem Statement

Formally, the problem is defined as follows. There are three parameters: n is the number of agents,
k is the number of tasks, and s is the target switching cost, which we define later. The goal is
to define a set of n deterministic functions fn,k

1 , fn,k
2 , . . . , fn,k

n , one for each agent, with the below
properties. The function associated with each agent determines which task that agent is assigned
to given the current demand vector.

• Input: For each agent a, the function fn,k
a takes as input a demand vector ~d = {d1, d2, . . . , dk}

where each di is a non-negative integer and
∑

i di = n. Each di is the number of agents
required for task i, and the total number of agents required for tasks is exactly the total
number of agents.

• Output: For each agent a, the function fn,k
a outputs some i ∈ [k]. The output of fn,k

a (~d) is
the task that agent a performs when the demand vector is ~d.

• Demand satisfied: For all demand vectors ~d and all tasks i, we require that the number of
agents a for which fn,k

a (~d) = i is exactly di. That is, the allocation of agents to tasks defined

by the set of functions fn,k
1 , fn,k

2 , . . . , fn,k
n exactly satisfies the demand vector.

• Switching cost satisfied: The switching cost of a pair of demand vectors ~d, ~d′ is defined
as the number of agents a for which fn,k

a (~d) 6= fn,k
a (~d′); that is, the number of agents that
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switch tasks if the demand vector changes from ~d to ~d′ (or from ~d′ to ~d). We say that a pair
of demand vectors ~d, ~d′ are adjacent if |~d − ~d′|1 = 2; that is, if we can get from ~d to ~d′ by
moving exactly one unit of demand from one task to another. The maximum switching cost
of a set of functions fn,k

1 , fn,k
2 , . . . , fn,k

n is defined as the maximum switching cost over all
pairs of adjacent demand vectors; that is, the maximum number of agents that switch tasks
in response to the movement of a single unit of demand from one task to another. We require
that the maximum switching cost of fn,k

1 , fn,k
2 , . . . , fn,k

n is at most s.

We are interested in the question of for which values of the parameters n, k, and s, there exists a
set of functions fn,k

1 , . . . , fn,k
n that satisfies the above properties. In particular, we aim to minimize

the maximum switching cost:

Question. Given n and k, what is the minimum possible maximum switching cost achievable
over all sets of functions fn,k

1 , . . . , fn,k
n ?

3.1 Remarks

Remark 1. The problem statement only considers the switching cost of pairs of adjacent demand
vectors. We note that this also implies a bound on the switching cost of non-adjacent vectors: if
every pair of adjacent demand vectors has switching cost at most s, then every pair of demand
vectors with `1 distance D has switching cost at most sD/2 (D is always divisible by 2 since for
every demand vector

∑
i di = n).

Remark 2. We note that the problem statement is consistent with our setting described in sec-
tion 2. In particular, the agents have complete information about the changing demand vector
because for each agent, the function fn,k

a takes as input the current demand vector. The agents are
heterogeneous because each agent a has an separate function fn,k

a . The agents cannot base their
decision for which task to perform on communication or memory because the only input to each
function fn,k

a is the current demand vector.

Remark 3. Forbidding communication among agents is crucial in the formulation of the problem,
as otherwise the problem would be trivial. In particular, it would always be possible to achieve
maximum switching cost 1: when the current demand vector changes to an adjacent demand vector,
the agents simply reach consensus about which single agent will move. As such, one technical
challenge of this problem is that there are exponentially many ways to move demand over time to
reach the present demand vector, however the allocation of agents must be the same regardless of
how the present demand vector was reached.

Remark 4. We recognize that the problem statement does not reflect the literal behavior of insect
colonies, as it is unreasonable to assume that agents can observe and satisfy an exact demand vector
deterministically. However, the problem statement captures the core combinatorial structure of
dynamic distributed task allocation.

4 Past Work

The problem statement was formulated by Su, Su, Dornhaus, and Lynch [21], who presented two
upper bounds and a lower bound.

The first upper bound is a very simple set of functions fn,k
1 , . . . , fn,k

n with maximum switching
cost k − 1. Each agent has a unique ID in [n] and the tasks are numbered from 1 to k. The
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functions are defined so that for all demand vectors, the agents populate the tasks in order from 1
to k in order of increasing agent ID. That is, for each agent a, fn,k

a is defined as the task j such
that

∑j−1
i=0 di < ID(a) and

∑j
i=0 di ≥ ID(a). Now, starting with any demand vector, if one unit of

demand is moved from task i to task j, then at most one agent from each task numbered between
i and j (including i but not including j) shifts to a new task. There are at most k − 1 such tasks
so the maximum switching cost is k − 1.

The lower bound of Su et al. is also very simple. It shows that there does not exist a set of
functions with maximum switching cost 1 for n ≥ 2 and k ≥ 3. Suppose for contradiction that there
exists a set of functions with maximum switching cost 1 for n = 2 and k = 3 (the argument can be
easily generalized to higher n and k). Suppose the current demand vector is [1, 1, 0], that is, one
agent is required for each of tasks 1 and 2 while no agent is required for task 3. Suppose agents a
and b are assigned to tasks 1 and 2, respectively, which we denote [a, b, ∅]. Now suppose the demand
vector changes from [1, 1, 0] to the adjacent demand vector [1, 0, 1]. Since the maximum switching
cost is 1, only one agent moves, so agent a remains at task 1 and agent b moves to task 3, so we
have [a, ∅, b]. Now suppose the demand vector changes from [1, 0, 1] to the adjacent demand vector
[0, 1, 1]. Again, since the maximum switching cost is 1, from [a, ∅, b] agent a moves from task 1 to
task 2 resulting in [∅, a, b]. Now suppose the demand vector changes from [0, 1, 1] to the adjacent
demand vector [1, 1, 0], which was the initial demand vector. Since the maximum switching cost is
1, from [∅, a, b] agent b moves from task 3 to task 1 resulting in [b, a, ∅]. The problem statement
requires that the allocation of agents depends only on the current demand vector, so the allocation
of agents for any given demand vector must be the same regardless of the history of changes to
the demand vector. However, we have shown that the allocation of agents for [1, 1, 0] was initially
[a, b, ∅] and is now [b, a, ∅], a contradiction. Thus, the maximum switching cost is at least 2.

The second upper bound of Su et al. states that there exists a set of functions with maximum
switching cost 2 if n ≤ 6 and k = 4. They prove this result by exhaustively listing all 84 demand
vectors along with the allocation of agents for each vector.

5 Our results

Su et al. left the problem open of whether the maximum switching cost can always be upper
bounded by 2, regardless of the number of tasks. Our results show that it is not true and provide
further evidence that the maximum switching cost grows with the number of tasks.

In particular, one might expect that the limitations on n and k in the second upper bound of
Su et al. is due to the fact the space of demand vectors grows exponentially with n and k so the
method of proof by exhaustive list becomes unfeasible. However, our first result is that the upper
bound of Su et al. is actually tight. In particular, achieving maximum switching cost 2 is impossible
even if the number of tasks is increased by 1.

Theorem 5.1. For n ≥ 3, k ≥ 5, every set of functions fn,k
1 , . . . , fn,k

n has maximum switching cost
at least 3.

We then consider the next natural question: For what values of n and k is it possible to achieve
maximum switching cost 3? Our second result is that that maximum switching cost 3 is not always
possible:

Theorem 5.2. There exist n and k such that every set of functions fn,k
1 , . . . , fn,k

n has maximum
switching cost at least 4.

The value of k for Theorem 5.2 is an extremely large constant expressed as a tower function
and derived from hypergraph Ramsey numbers [4].
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[20] Erol Şahin. Swarm robotics: From sources of inspiration to domains of application. In Inter-
national workshop on swarm robotics, pages 10–20. Springer, 2004.

[21] Hsin-Hao Su, Lili Su, Anna Dornhaus, and Nancy Lynch. Ant-inspired dynamic task allocation
via gossiping. In International Symposium on Stabilization, Safety, and Security of Distributed
Systems, pages 157–171. Springer, 2017.

[22] Zijian Wang and Mac Schwager. Multi-robot manipulation with no communication using only
local measurements. In CDC, pages 380–385, 2015.

[23] Yongming Yang, Changjiu Zhou, and Yantao Tian. Swarm robots task allocation based on
response threshold model. In 2009 4th International Conference on Autonomous Robots and
Agents, pages 171–176. IEEE, 2009.

[24] Emaad Mohamed H Zahugi, Mohamed M Shanta, and TV Prasad. Oil spill cleaning up using
swarm of robots. In Advances in Computing and Information Technology, pages 215–224.
Springer, 2013.

6


