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Abstract

One of the most popular existing models for task allocation in ant colonies is the so-called threshold-
based task allocation model. Here, each ant has a fixed, and possibly distinct, threshold. Each task has
a fixed demand which represents the number of ants required to perform the task.! The stimulus an
ant receives for a task is defined as the demand of the task minus the number of ants currently working
at the task. An ant joins a task if the stimulus of the task exceeds the ant’s threshold.

A large body of results has studied this model for over four decades; however, most of the theoretical
works focuses on the study of two tasks. Interestingly, no work in this line of research shows that the
number of ants working at a task eventually converges towards the demand nor does any work bound
the distance to the demands over time.

In this work, we study precisely this convergence. Our results show that while the threshold-based
model works fine in the case of two tasks (for certain distributions of thresholds); the threshold model
no longer works for the case of more than two tasks. In fact, we show that there is no possible setting
of thresholds that yields a satisfactory deficit (demand minus number of ants working on the task) for
each task.

This is in stark contrast to other theoretical results in the same setting [CDLN14] that rely on state-
machines, i.e., some form of small memory together with probabilistic decisions. Note that, the classical
threshold model assumes no states or memory (apart from the bare minimum number of states required
to encode which task an ant is working on). The resulting task allocation is near-optimal and much better
than what is possible using joining thresholds. This remains true even in a noisy environment [DLM+18].

While the deficit is not the only important metric, it is conceivably one of the most important metrics
to guarantee the survival of a colony: for example if the number of workers assigned for foraging stays sig-
nificantly below the demand, then starvation may occur. Moreover, our results do not imply that ants do
not use thresholds; we merely argue that relying on thresholds yields a considerable worse performance.

*mallmann@mit.edu
1Some models also consider demands that increase over time.



1 Introduction

The theoretical study of threshold-based division of labor in insect colonies dates back to the work of Wil-
son |Wil76]. A particular species of ants (P. dentata) was observed to split into two castes (majors and
minors) where each caste performs a different set of tasks.

The authors of [BTDI6| built on the observations of Wilson [Wil76] and suggested a theoretical model
of fixed thresholds to explain task allocation. The assumption of this model is that each ant is characterized
by a fixed (genetically determined) response threshold to various stimuli. The authors assumed a single
task and two castes of ants with respective thresholds 61, 6>. They did not assume a fixed demand for each
task, but rather, a total number of units of work that must be done by the ants in each step. If work is
not being done, the units of work accumulate and must be handled later.

The authors focused on the average time spent working as a function of the fraction of ants of caste 7 in
the colony. They showed that their simulation results coincide with empirical results of ants P. megacephala
and the results observed by [Wil76] and therefore account for task specialization. However, they did not
provided a quality measure for task allocation. Moreover, our simulations of their algorithm indicate that
the system does not converge to such an equilibrium and instead results in very large oscillations (which are
linear in the number of workers). Bonabeau et al. [BTD98] extended the theory of fixed response thresholds
in various ways. They showed that this model is flexible enough to explain many phenomena observed in
the experiments, like temporal polyethism and task specialization. The paper also contains simulations
regarding temporal polyethism.

A model of thresholds proposed by Page et al. [PM98| differs from the line of work by Bonabeau et al.
in the following aspects. The model considered by Page et al. assumes purely deterministic task allocation
(i.e., the decision by each ant is made deterministically based only on the level of stimulus and the threshold
of this ant). The stimulus does not accumulate over time. The level of threshold of each ant is assumed
to be fixed and initially drawn from different distributions. However, the desired demand of the task is
not defined, hence, the authors do not analyze any quality measure for the allocation. The evolution of
thresholds over time or generations was also studied in later works [DPKW12; LTKF12].

[MWCG16] considered a modification of the response threshold model from [BTD96]. The authors first
present results of an experiment on bumblebees with one task that concern the maintenance of a correct
temperature of the brood. The authors argue that the standard probabilistic threshold model of [BTD96]
does not match the experimental results because in the experiment the concentration of the stimulus did
not significantly influence the rate of engagement of worker with the task. In a second step, a new time-
resolved model (which can be seen as a simple state machine) is presented. State-machines have also been
used by [PGGI6], where the authors studied the influence of the group size on task allocation in a very
general theoretical model of interacting social insects.

Distributed Computing Background. Task allocation has recently gained attention from theoretical
computer scientists. In [CDLN14], the authors assumed synchronous rounds and binary feedback. Each
task has an associated demand and whenever too many ants work on a task, all ants receive the feedback
overload and lack otherwise. It turns out that this feedback is enough to allow the ants to converge to an
almost-optimal allocation. It is worth emphasizing that in [CDLN14] no thresholds are used. Considering
a noisy version of the model was left as an open question, which was later studied by [DLM-+18]. In their
setting, the binary feedback is correct with a probability that depends on how large the absolute value of
the deficit is; the further the deficit is from 0, the more likely that the ants receive the correct feedback.
The authors use a sigmoid function of the deficit to model this. They showed that convergence to an almost
perfect deficit cannot be achieved; small oscillations are unavoidable. However, they also presented a simple
algorithm that convergences to states with small oscillations. Both papers use as a quality measure the abso-
lute deficit of the tasks and show that the number of ants working on a task quickly approaches the demand.
Both extend to the setting of dynamic task allocation, where the demands are changed from time to time.



2 Formal Model, Notation and Assumptions

We assume we have n ants and k tasks, where k is some constant. Furthermore, each task j € [k] =
{1,2,...,k} has a fixed demand d) meaning that the task requires d) many ants assigned to it, e.g.,
if task j represents nursing for brood, then d¥) represents the required number of nursing ants. Let
d=[d",d?, ... d*)] be the demand vector. We assume that > el d9) < n. Let Wt(]),j € [k] denote
the load of resource j at time ¢, i.e., the number of ants performing the task. For task j € [k] we define

the deficit as A,Ej ) = ) — Wt(j ). a positive deficit signifies that ants are missing and a negative deficit
signifies an overload of ants. We assume that each ant i € [n] has for each task j € [k] a joining threshold

ji(j ) and leaving threshold Kl(j ) > 0. We assume synchronous rounds, during which, the thresholds are used
by the ants to make (simultaneous) decisions about joining or leaving the tasks. When ant i is working on
task j with overload of at least KZ(] )

(

i

, then ant i leaves the task. Symmetrically, if there is exactly one task

7 with underload of at least j J ), then ant 7 joins the task; if there are several such tasks, ant ¢ chooses one

uniformly at random. More formally, if ant ¢ is working on task j in some fixed round ¢ and —Agj_)l > El(.] ),
then task;(t) = idle, else task;(t) = task;(t — 1). If 7 is idle (task;(t — 1) = idle), then task;(¢) is drawn
uniformly from {j: Agj_)l > ji(j )}; if the set is empty, then the ant remains idle. We assume there is no
communication among the ants. The question we ask here is whether there exists a set of thresholds such

that for any set of demands, the deficit per task is eventually sub-linear in the number of ants.

3 Results and Proofs

For two tasks, the following simple assignment of joining thresholds ji(l) =1, ji@) =n—1i+1, fori € [n] and

equal leaving thresholds 41) = 67(;2) = 1 achieves a perfect allocation after one step. This is summarized in
the following generalization of [PM9S|.

Proposition 3.1. For k < 2, the above assignment of joining and leaving thresholds (all leaving thresholds
equal), ensures that for any demand vector d the resulting allocation of ants to tasks yields deficit equal to
0 in all the tasks.

However for k > 2 such an assignment of thresholds is no longer possible as we show in Theorem 3.2. The
negative result still holds even if leaving thresholds instead of joining thresholds are used (Theorem 3.3).
The idea behind the impossibility results is combinatorial: regardless of how the thresholds are chosen,
there is always a distribution of demands that will result in a large deficit. The challenge lies in showing
that this remains true over arbitrarily large spans of time.

Theorem 3.2 (Only Joining Thresholds). Assume that k > 3 and for any task j € [k] ants have arbi-
trary joining thresholds j?),jéj), e ,j,(f) and equal leaving thresholds, i.e., EZ(]) = EE,J ) for all i,i € [n] and
J,7" € |k]. Then there exists a demand vector such that there is task j € [k] having an absolute deficit of

Q(n) in every round.

Proof. Consider any colony of n ants with arbitrary joining thresholds and identical leaving thresholds. We
define sets: A; = {z j(]) < g—g} . First we want to show that for each j € [k] we have:
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because if this double inequality is not satisfied for some j* € [k], then the adversary can set the demand
vector to be dU”) = 2n/5 and dU) = 0 for j # j*. In this case, the absolute value of the deficit is Q(n/k) in
each step ¢ > 1. Thus, in the following we assume (1) holds for all j € [k]. We have by inclusion-exclusion
principle:

n > UAiZZ!Ai|— Z |A; VA,

i€[k] i€[k] 1<i<j<k



and

45k — 2
> \AiﬂAj|ZZ|Ai|—n2n< 00 —1>.

1<i<i<k i€[K]

The sum on the left side has (g) summands thus we can find two tasks i*, j* € [k] such that:
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The adversary sets the demand vector to be d") = dU") = 9n/20 and d¥) = 0, for j € [k] \ {i*,5*}. The
set of ants that respond to such demands is exactly A; U Aj«. We have by (2):
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Note that for k > 3, value (% — ﬁzl)) is a positive constant. Notice that in any step ¢ only ants from
A= U Aj= can possibly be working on tasks i*, j* (because all other ants have a too high threshold to join).
Moreover we showed that the total size of this set is too small to satisfy the demands of both tasks. It does
not matter how the ants from A;< U A;+ distribute themselves among these two tasks there will be at least

Q(n/k) = Q(n) deficit and this deficit will occur in every step. O
We now give the lower bound for the case when only leaving thresholds are used.

Theorem 3.3 (Only Leaving Thresholds). Assume that k > 3 and n ants have arbitrary leaving thresholds
égj),fé]), .. ,]}(L]) and equal joining thresholds, i.e., ji(]) = jz(,j ) for all i,7" € [n] and j,j' € [k]. Then, forn
large enough, there exists a demand vector such that there is a task with a deficit of Q(n) in every round

with overwhelming probability 1 — exp(—Q(n)).

Proof. We start by establishing two claims (Claim 3.4 and Claim 3.5). Each claim states that if a certain
property of the thresholds fails, then the deficit must be ©(n). Due to space imitation, the proofs of the
claims are omitted. ,

Let A; be the set of ants that leave task j if the overload is less than ¥, i.e., A; = {z EE]) < %} .

Claim 3.4. Let € = 1/30. If the joining threshold is smaller than (1 — )n, then the deficit is Q(n).
Claim 3.5. Let ¢ = 1/30. If |Aj| & [n/3 —en,n/3 + en], then the deficit is Q(n).

Let € = 1/30. Due to Claim 3.4 and Claim 3.5, we can focus on the case that |A;| € [n/3 —en,n/3+en]
and j%l) > (1 — e)n. Recall that we assume that if there are several tasks with a positive deficit (lack) of
ants, then each ant selects one of these uniformly at random. In the remainder, consider the setting where
dM =d® =n/9, d® =7n/9, and for j € {4,...,k} the demands are set d¥) = 0.2 By Chernoff bounds,
we have for j € [3] that Wl(j ) = (1 £¢e)n/3. Note that task 3 is underloaded and thus, by assumption, no
ants will leave this task. Furthermore for j € [2] the overload will be

w9 — @ e [(1=¢e)(n/3) = n/9, (1 +¢)(n/3) — n/9).

Observe that the overload is upper bounded by n/3. The number of ants of A; is at most (1 & 2¢)n/9 for
each j € [3] with probability at least 1 —exp(—£(n)). Hence, the total number of ants per task j € [2] after
leaving (which is limited to the ants in A;) is at least (1 —¢)(n/k) — (1 +2¢)n/9 > n/9 = d¥) and hence
the task remains overload even after ants leave the task.

2It is easy to extend the proof to nonzero demands.



In the next round, all idle ants will join task k or remain idle; since task k is the only task with a deficit.
The number of idle ants in is bounded by (1 + 2¢)n/3 + en and the load of task k& becomes

Wi < (14 e)n/3+ (14 2¢)n/3 +en < 6.9/9,

assuming k > 3. This corresponds to a deficit of Agl) > Tn/9—6.9n/9 = Q(n). The load of all other tasks
remains unchanged and the load of task k will also not change afterwards. Hence, the deficit is Q(n) in
every round from here on, which completes the proof. O

Future Work. It remains an interesting open question to study the case where both joining and leaving
thresholds are used by the ants. So far, leaving thresholds have not been considered in the biology literature.
Nonetheless, we conjecture that in the model without memory, even if both joining and leaving thresholds
are used, convergence to any distribution of demands cannot be guaranteed. In addition, our work focuses
on the worst-case by showing that for any distribution of thresholds there exists a distribution of demands
such that the deficit is large. However, we conjecture that the results also hold for almost any distribution
of demands; however, quantifying the deficit over large periods of time appears to be intractable. To cir-
cumvent this, it might be interesting to study the case where there are only a small number of different
thresholds. Most importantly, we ask whether experiments on ants could suggest that the ants’ decisions
can be explained by state-machines rather than response thresholds.
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