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Task Allocation

(a) Foraging (b) Brood care

(c) Farming aphids (d) Cultivating fungi
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How are ants allocated to tasks?

Age-based: young ants starting doing task in the nest (e.g., brood
care and nest maintenance), when they are older they perform
tasks outside (e.g., foraging, nest defense, ...)

Foraging for work: Ants don’t have preferences; external space
dictates what task an ant works on

Response thresholds: Different ants have different thresholds for
each task, i.e., they perform the task when the stimulus is larger
than the threshold.

State machines: Ants have different states and transition from
one state to another based on the interaction with the
environment.
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Response Thresholds

Wilson (76): Observed that ants (P. dentata) split into two castes
(majors and minors) where each caste performs a different set of
tasks.

Bonabeau et al. (96), study a theoretical version of this. One
tasks and different thresholds θ1, θ2 for the two castes.
Distribution of majors and minors agrees with experimental data
of Wilson.

Page et al. (98) use a slightly different model and assumes that
the thresholds are drawn from different distribution.

Evolution of thresholds has also been studied.
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Let’s model this!
We’ll model ants and tasks!

An accurate depiction of the Squarus Formica
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Model - Tasks
We have k tasks.
demand: Each task i demand(j), i.e., number of ants required to
work on task j.

load: load
(t)
j is the number of ants working on it at time t.

deficit: deficit
(t)
j is the demand(j)− load

(t)
j at time t.

Demand 3
Deficit 1

Demand 3
Deficit -1 (overload)

Two tasks, one underloaded and one overloaded.
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Model - Ants
Say we have n ants.
Assume we have synchronous rounds
For each task j, each ant i has a (joining) threshold j(j)i

If deficit
(t)
j ≥ j

(j)
i and ant is idle, then the ant i joins the task j.

In case there are several tasks exceeding the joining threshold,
the ant picks one uniformly at random.

2 3 4

threshold for task 1

Task 1

Deficit 1

Task 2

Deficit 2

Task 3

Deficit 4

threshold for task 2

threshold for task 3
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Model - Ants
Say we have n ants.
Assume we have synchronous rounds
For each task j, each ant i has a (joining) threshold j(j)i

If deficit
(t)
j ≥ j

(j)
i and ant is idle, then the ant i joins the task j.

In case there are several tasks exceeding the joining threshold,
the ant picks one uniformly at random.

2 3 4

Task 1

Deficit 5

Task 2

Deficit 6

Task 3

Deficit 4

All deficits are above the threshold. The ants joins a task chosen uniformly
at random.
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When do ants leave?

We assume all ants have the same leaving threshold

If the overload exceeds this threshold, all ants will leave.
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What is possible?

Quality measure Q for task allocation: Sum of absolute deficits.
For example: Q = |1|+ | − 1| = 2

Demand 3
Deficit 1

Demand 3
Deficit -1 (overload)

1 Task: Perfect allocation possible (Q = 0)

2 Tasks: Perfect allocation possible (Q = 0)

3 Tasks: ??? (our main result)

I’ll talk about all three
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1 Task

Give numbers from 1 to n to the ant.

Ant i has a joining threshold of i.

The leaving threshold (for all ants) is arbitrary

1 2 3 4
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1 Task

Give numbers from 1 to n to the ant.

Ant i has a joining threshold of i.

The leaving threshold (for all ants) is arbitrary

Task 1

Deficit 0

Demand 3

1

2

3

4
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2 Tasks
Give numbers from 1 to n to the ant.

Ant i has a joining thresholds i and n− i (task 1; task 2)

The leaving threshold (for all ants) is some arbitrary positive
value

1 2 34 3 2 14
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2 Tasks
Give numbers from 1 to n to the ant.

Ant i has a joining thresholds i and n− i (task 1; task 2)

The leaving threshold (for all ants) is some arbitrary positive
value

Task 1

Deficit 2

Demand 2

1 2 34 3 2 14

Task 2

Deficit 2

Demand 2

Demands changed from (3, 1) to (2, 2)
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2 Tasks
Give numbers from 1 to n to the ant.

Ant i has a joining thresholds i and n− i (task 1; task 2)

The leaving threshold (for all ants) is some arbitrary positive
value

Note: We always assume that the sum of demands are at most n; oth-
erwise it’s impossible anyway ...
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3 Tasks - Our Theorem
In general, it is impossible to reach a perfect allocation (Q = 0)!
In particular, for any setting of thresholds, there is a demand
vector where the sum of absolute values is linear in n.

Disclaimer: This does not mean that ants don’t do it, but if they
do, it’s highly inefficient.
Note, state-machines are capable of reaching perfect allocation
(Q = 0) in even harsher settings
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3 Tasks
Say we have n with arbitrary joining thresholds.
Assume they have the same leaving threshold.
Assume we have 3 tasks.

Consider the number of ants n1 that would join task n1 if it had a
demand of 2.
Case n1 < 2: then too few ants will join
If n1 > 2 then too many ants join

Task 1 Task 2 Task 3
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3 Tasks
Say we have n with arbitrary joining thresholds.
Assume they have the same leaving threshold.
Assume we have 3 tasks.
Consider the number of ants n1 that would join task n1 if it had a
demand of 2.

Case n1 < 2: then too few ants will join

If n1 > 2 then too many ants join

Task 1

2 ? ? 3 ? ? 1 ? ? 2 ? ? 5 ? ?

demand 2

Two cases, both bad: Deficit will always remain −1 or endless oscillations
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3 Tasks

Thus we want n1 = 2

By the same logic we also need n2 = n3 = 2

The problem is that when we open two carefully chosen tasks
with demand 2, then one task won’t have enough ants.

Incoming edges of the task should be 6

Thus (at least) one ant would join two different tasks.
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3 Tasks

More generally speaking: For any k and n large enough, the sum
of absolute deficits will be linear in the number of ants

Why hasn’t this been noticed before?

First, many papers only study two tasks ...

Second, most of the papers don’t analyze any quality measure. If
they do, it’s often the proportion of minors and majors in the
nest.
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Boneabeau Model - Huge oscillations

The following figure shows our simulation of this protocol with
different fractions of cast 1 (n1/n). In all different settings of n1/n
we see large oscillations of the deficit. The oscillations appear to be
linear in the number of ants.

n1/n = 0.2 n1/n = 0.3 n1/n = 0.7

Figure: Parameters are N = 1000, θ1 = 8, θ2 = 1, δ = 1,α = 3 as
suggested by Bonabeau et al. (96) and Bonabeau et al. (98).
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State Machines

The performance of state-machines can be much better Q ≤ 1

In every time step an ant is in a state (marked with an x) and
receives some feedback.

1/2

1/2

Legend:

Working state

None-working state

Based on that feedback (e.g. →) the ant transitions to the next
state

1/2

1/2

Legend:

Working state

None-working state
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State Machines

Meyer et al. showed that
threshold model (for bumblebees) does not match
experimental results.
They suggest a time-resolved model (which can be seen as a
simple state machine).
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State Machines

Cornejo et al. proves that for binary feedback
(overload/underload of task) achieves a ‘perfect allocation’
(Q ≤ 1)

1/2

1/2

Legend:

Working state

None-working state

Dornhaus et al. (BDA last year) show that this still works
(Q << n) even when the feedback (overload/underload of task)
is noisy
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Summary: “Remember the Past and Forget Threshold”

Response threshold theory assumes workers to differ from one
another.

They were initially introduced to avoid massive oscillations (all
ants behave exactly the same)

Response thresholds are nonetheless far from optimal

State machines perform much better (w.r.t. Q)

Indicating that there is no need for permanently different

Using a tiny bit of memory (state machines) allows ants to
‘differentiate’ temporarily

Of course you could combine both models, but is there an
advantage?
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Thank You

Questions?
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