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Evolution of collective behavior in 
social insects:

a model for complex systems

Anna Dornhaus
Ecol & Evol Bio, University of Arizona (Tucson)

Complex ‘systems’

Complexity 
Modularity and interaction

• recursivity apparent 
unpredictability

• specialization of subunits 
‘visual’ complexity

• unit behaviors optimized for 
collective outcome 
sophisticated algorithms for 
interaction

Collective strategies

• Task allocation/Division of labor

– Specialists are not always more efficient

– Cheap, poor performers can be optimal

– A lot of unit variation is not specialization 
on tasks, but on other dimensions 
(robustness, cost/accuracy, life history)

• Information exchange/search

– Positive feedback reduces innovation

– Communication has opportunity costs

Anna Dornhaus research

What are the 
benefits & costs 

= why / when 
does it evolve?

AntsWater

Food “Stone” wall

Empirical model system

Rock ants: Temnothorax rugatulus
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Allocation to defense
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Ant fights

• Competition with 
other colonies is a 
major selection 
pressure in ants

• Rich theory in 
biology on animal 
contests and 
information use
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Allocation to defense

Ant fights – offense (workers out)

• Ant colonies use own & 
opponent worker 
number (=fighting 
ability?) and brood 
number (=resource 
value?) to decide 
investment in attack

• More ~ more

Allocation to defense

Ant fights – defense (guarding)

• Defense is a result of 
complex interplay 
between number of 
brood & workers…

• More brood ~ more 
defense when weak 
offense

Study by Victor ‘Blue’ 
Paat, Kenny Chapin, Anna 
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Allocation to defense
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Ant fights

• Number of 
searching/attacking 
workers may be 
matched to 
opponent

• Own and opponent 
traits are assessed 
to determine 
investment
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Defensibility

Quality

Threat

Deploying resources across sites

‘Turtle ants’ –
few soldiers, multiple 
sites, varying in 
quality, defensibility, 
and risk levels

Alex Wild

Study by Matina 
Donaldson-Matasci, Scott 
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Defense deployment

entrance size

d(k; h) =
h− 1/ 5

1 + e5(1− k/ h )
d(k; h) =

h− 1/ 5

1 + e5(1− k/ h )

3) Total expected 
number of surviving 
brood in all nests

A model of 
soldier defense 

Small entrance: 
fewer soldiers 
needed (h=1)

Large entrance: 
even maximal 
defense isn’t 
enough (h=6)

2) Chance of nest 
surviving for one 
season

Q
uality

D
efensibility

Threat

Defense function (one cavity)

Survival function (one cavity)

Fitness function (multiple cavities)

1) Chance of k
soldiers successfully 
defending a nest 
against an attack

attack intensity (Poisson process)

brood capacity

0 5 10 15 20
0.0

0.2

0.4

0.6

0.8

1.0

Number of soldiers

P
r.

of
su

cc
es

sf
ul

de
fe

ns
e

Model results
To defend or not is the first choice (low threat first); 
afterwards how many to allocate (more for high threat)

Defense deployment
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Do ants use the ‘optimal’ strategy?
Model Predictions Experimental results

Which to defend? Defense level? Which to defend? Defense level?

Choose to 
defend high-
quality cavities

Defend high & 
low quality 
nests at same 
level

Choose to defend 
high-quality 
cavities

Defend high & 
low quality 
nests at same 
level

Choose to 
defend cavities 
that are easy to 
defend

Defend 
vulnerable 
cavities more 
heavily

No preference 
based on 
defensibility

Defend 
vulnerable 
cavities more 
heavily

Defend fewer 
cavities (esp. 
hard-to-defend 
ones)

Shift defense 
away from 
vulnerable 
cavities

Defend fewer 
cavities (no 
defensibility 
preference)

Shift defense 
away from 
vulnerable 
cavities

Q
uality

D
efensibility

Threat

Defense deployment

Not in one respect: hard-to-defend sites are not avoided.
Limitation based on distributed allocation algorithm?
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Why study collective behavior in 
social insects?

Broad relevance

Many reasons!

• Philosophical: Complexity out of 
simpler parts

• Specific: Ecological (more biomass 
than vertebrates) and economic 
importance (pollinators, pests)

• Model for Cognition:
(Collective) intelligence in tractable 
system

• Model for Organismic traits: 
Evolutionary principles applied to different 
‘major transition’ or organizational level 
(e.g. evolution of life history, intraspecific 
variation, etc.)

• Practical: Application to engineering

1. Communication & Information flow – push & pull, network structure, 
resource distribution, symmetry breaking, personal vs social 
information and reliability

2. Collective decision-making – individual vs collective, latent learning, 
colony size & consensus, speed & accuracy

3. Optimal search – adaptive random walks, group size effects

4. Spatial sorting – creates variation, stigmergy, self-organized group 
size effects

5. Division of labor – inactive workers, specialization, response threshold 
distributions, reserves, algorithms/mechanisms, task switching, elites

6. Individual vs collective intelligence – learning complex tasks without 
reward

Social insects

Research areas

socialinsectlab.arizona.edu


