

Anna Dornhaus Ecol & Evol Bio, University of Arizona (Tucson)





### Anna Dornhaus research

# **Collective strategies**

- Task allocation/Division of labor
  - Specialists are not always more efficient
  - Cheap, poor performers can be optimal
  - A lot of unit variation is not specialization on tasks, but on other dimensions (robustness, cost/accuracy, life history)
- Information exchange/search
  - Positive feedback reduces innovation
  - Communication has opportunity costs

What are the benefits & costs = why / when does it evolve?





#### Allocation to defense

# Ant fights - defense (guarding)



- Defense is a result of complex interplay between number of brood & workers...
- More brood ~ more defense when weak offense









### Allocation to defense

Ant colonies use own &

opponent worker

number (=fighting

ability?) and brood

number (=resource

investment in attack

value?) to decide

More ~ more

### Ant fights - offense (workers out)



|                                                                                                                    | Defense deployment                                         |                                                        |                                                              |                                                        |
|--------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------|
| Do ants use the 'optimal' strategy?                                                                                |                                                            |                                                        |                                                              |                                                        |
|                                                                                                                    | Model Predictions                                          |                                                        | Experimental results                                         |                                                        |
|                                                                                                                    | Which to defend?                                           | Defense level?                                         | Which to defend?                                             | Defense level?                                         |
| Quality                                                                                                            | Choose to<br>defend high-<br>quality cavities              | Defend high &<br>low quality<br>nests at same<br>level | Choose to defend<br>high-quality<br>cavities                 | Defend high &<br>low quality<br>nests at same<br>level |
| Defensibility                                                                                                      | Choose to<br>defend cavities<br>that are easy to<br>defend | Defend<br>vulnerable<br>cavities more<br>heavily       | No preference<br>based on<br>defensibility                   | Defend<br>vulnerable<br>cavities more<br>heavily       |
| <b>S</b>                                                                                                           | Defend fewer<br>cavities (esp.<br>hard-to-defend<br>ones)  | Shift defense<br>away from<br>vulnerable<br>cavities   | Defend fewer<br>cavities (no<br>defensibility<br>preference) | Shift defense<br>away from<br>vulnerable<br>cavities   |
| Not in one respect: hard-to-defend sites are not avoided.<br>Limitation based on distributed allocation algorithm? |                                                            |                                                        |                                                              |                                                        |



Broad relevance Why study collective behavior in social insects? Many reasons! • Philosophical: Complexity out of simpler parts Specific: Ecological (more biomass than vertebrates) and economic importance (pollinators, pests) Model for Cognition: (Collective) intelligence in tractable system

- Model for Organismic traits: Evolutionary principles applied to different 'major transition' or organizational level (e.g. evolution of life history, intraspecific variation, etc.)
- Practical: Application to engineering



### **Research areas**

- Communication & Information flow push & pull, network structure, resource distribution, symmetry breaking, personal vs social information and reliability
- Collective decision-making individual vs collective, latent learning, colony size & consensus, speed & accuracy
- Optimal search adaptive random walks, group size effects Spatial sorting creates variation, stigmergy, self-organized group size effects
- Division of labor inactive workers, specialization, response threshold distributions, reserves, algorithms/mechanisms, task switching, elites
- Individual vs collective intelligence learning complex tasks without reward

socialinsectlab.arizona.edu

Social insects