Genome Wide Epigenetic Modifications as a Shared Memory Consensus Problem

Sabrina Rashid1, Gadi Taubenfeld2, Ziv Bar-Joseph1,3

1 Computational Biology Department, Carnegie Mellon University.
2 School of Computer Science, The Interdisciplinary Center.
3 Machine Learning Department, Carnegie Mellon University.
Motivation

Like large-scale computing platforms, cellular/molecular systems are mostly distributed consisting of entities that interact, coordinate, and reach decisions without central control.
Motivation

- Like large-scale computing platforms, cellular/molecular systems are mostly distributed consisting of entities that interact, coordinate, and reach decisions without central control.

- However, most prior biologically inspired distributed computing methods rely on message passing.
Here we model the process of genome wide epigenetic modifications as a shared memory system.
Objective

- Here we model the process of genome wide epigenetic modifications as a shared memory system.

- Formulate a particular consensus problem for the shared memory model from DNA epigenome.
Objective

- Here we model the process of genome wide epigenetic modifications as a shared memory system.

- Formulate a particular consensus problem for the shared memory model from DNA epigenome.

- Present possible algorithms to achieve consensus with biologically plausible assumptions.
Objective

- Here we model the process of genome wide epigenetic modifications as a shared memory system.

- Formulate a particular consensus problem for the shared memory model from DNA epigenome.

- Present possible algorithms to achieve consensus with biologically plausible assumptions.

- Prove convergence of the algorithms both analytically and in simulations.
Epigenetics refer to the post translational modifications of the histone proteins on which the DNA is wrapped. \(^1\)

\(^1\)Figure courtesy: whatisepigenetics.com
Epigenetics refer to the post translational modifications of the histone proteins on which the DNA is wrapped \(^1\).

Such modifications play an important role in regulating gene expression and chromatin states.

\(^1\) Figure courtesy: whatisepigenetics.com
Epigenetics refer to the post translational modifications of the histone proteins on which the DNA is wrapped.\(^1\)

Such modifications play an important role in regulating gene expression and chromatin states.

Hence these modifications are highly regulated and consistent across large stretches of the genome.

\(^1\)Figure courtesy: whatisepigenetics.com
Epigenetic Modifiers

- Histone modifiers can be broadly categorized into three classes \(^2\):
 - Readers
 - Writers
 - Erasures

Epigenetic Modifiers

- Histone modifiers can be broadly categorized into three classes\(^2\):
 - Readers
 - Writers
 - Erasures

Epigenetic Modifiers

- Histone modifiers can be broadly categorized into three classes:\(^2\):
 - Readers
 - Writers
 - Erasures

Restrict histone modifications to two types 0 or 1: writers (W0/W1) and erasers (E0/E1).
Modeling Assumptions

- Restrict histone modifications to two types 0 or 1: writers (W0/W1) and erasers (E0/E1).

- Regulation of the modifiers results in the same histone marks appearing for a stretch of DNA, i.e., *local consensus*.
Modeling Assumptions

- Restrict histone modifications to two types 0 or 1: writers (W0/W1) and erasers (E0/E1).

- Regulation of the modifiers results in the same histone marks appearing for a stretch of DNA, i.e., *local consensus*.

- Stretch of DNA region with N total histones \leftrightarrow shared memory array of size N.
Modeling Assumptions

- Restrict histone modifications to two types 0 or 1: writers (W0/W1) and erasers (E0/E1).

- Regulation of the modifiers results in the same histone marks appearing for a stretch of DNA, i.e., local consensus.

- Stretch of DNA region with N total histones \leftrightarrow shared memory array of size N.

- $N_i \in \{V(Empty), 0, 1\}$

- State transition rules:
 - Allowed: V to 0 (1) by a W0 (W1) writer.
 - Allowed: 0 (1) to V by an E0 (E1) eraser.
 - Not allowed: 0 (1) to 1 (0).
In biology, this is achieved using CTCF gene and the fact that proteins often scan DNA in a local manner.\(^3\) Multiple \(W_0\) (\(W_1\)) writers/ \(E_0\) (\(E_1\)) erasers could get assigned to the same segment.

In biology, this is achieved using CTCF gene and the fact that proteins often scan DNA in a local manner \(^3\).

In biology, this is achieved using CTCF gene and the fact that proteins often scan DNA in a local manner \(^3\).

Multiple W0 (W1) writers/ E0 (E1) erasers could get assigned to the same segment.

Consensus Write-erase Problem

- The requirements of the consensus write-erase problem are that there exist a decision value $v \in \{0, 1\}$ such that,
 - **Agreement**: The value of each one of the N cells is eventually v, and does not change thereafter.
 - **Validity**: At least one v-writer exists.
 - The solution must be symmetric, i.e., the solution should not favor one of the two possible decision values.
Naïve Solution

- Writers of the leftmost segment compete to write the leftmost cell of the segment (assume v is the written value).

- The v-writers continue writing v into all the cells of the leftmost segment.

- v-writers of the other segments wait until leftmost overlapped cell of their segment is written.

- Continue writing the rest of the segments.
Naïve Solution

- Assume a priori agreement on which side is the left side.
- Inefficient $O(N)$ solution. Erasers do not participate.
Proposed Solution

The algorithm is inspired by the “Game of Life”. Let \(v \in \{0, 1\} \).

- Starting location and direction of traveling for each processor is chosen randomly.

Rule for a \(v \)-writer:
- Sees an empty cell, it writes \(v \) and moves on to the next cell.
- Otherwise, sees a non-empty cell, it moves on to the next cell.

Rule for a \(v \)-eraser:
- Sees the value \(v \) which is preceded by the value \(1 - v \) (collision), it erases the \(v \) and moves on.
- Otherwise, it just moves on.
In the full paper, we also consider a more efficient variant of this algorithm in which writers must spin (wait) when a collision is noticed.
Analytical and Simulation Results

- Algorithm proceeds in rounds, a write step followed by an erase step is denoted as round.

- To prove convergence, we compute the expected number of collisions in each round.

- We show that the expected number of collisions decreases in each round given $|W_0| \neq |W_1|$, hence guaranteeing convergence.
Execution Round

Step 1: Initial Writing

No. of collisions: 9

Step 2: Erasing

No. of collisions: 6

Step 3: Writing
Analytical and Simulation Results

Figure: Plots of expected number of collisions (Theoretical) and number of collisions from simulation vs execution rounds. a) High competition among the processors, $|W_1|/|W_0| = 1.33$, b) Low competition among the processors, $|W_1|/|W_0| = 2$.
Summary

- We formulated a consensus write-erase problem for distributed shared memory inspired from genome wide epigenetic modifications.

- The presented algorithms give important insight into the governing mechanisms of the histone marks.

- We show both theoretically and in simulations that our proposed algorithm indeed leads to consensus.
Future works

- Further improve the lower bounds given the simulation results.
- Find supporting experimental data to prove that a similar algorithm is really used in nature.
Acknowledgment

Ziv Bar-Joseph

Gadi Taubenfeld

&

BDA organizers.