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Fig. 1. NetLogo Simulator while the simulation was being executed annotated with objects of interest.

• Distance between the injection site and the target site:
37 Cells

• Released inducer chemical signals are diffused around
the target slowly and eventually evaporate over time.

• Diffusion Rate: 90%
• Evaporation Rate: ∼1%

B. Experiment Cases

Five different cases are considered. Each case is repeated
30 times.

Case 1: Strategy 1.
Case2 : Strategy 2 where each robot samples the environ-

ment for the presence of the chemical gradient at
every time step.

Case3 : Strategy 2 where each robot samples the envi-
ronment for the presence of the chemical gradient
every 2 time steps.

Case4 : Strategy 2 where each robot samples the envi-
ronment for the presence of the chemical gradient
every 3 time steps.

Case5 : Strategy 3.

C. Experimental Results

In the Multi-Directional Sensing and Motion model (Strat-
egy 1), robots have a more complex structure than they do in
the other two models. Due to their complex construction, the
performance of the robots were ∼2.5 times faster in reaching

the specified target than the best tested version of bacterial
mimicking strategy.

In the Bacterial Sensing and Motion model (Strategy 2),
robots are much simpler in construction. The robots were
tested using three different sampling rates. Of these, the
best tested version was the bacterial model with a sampling
rate of 1 time step and the worst tested version was the
model with sampling a rate of 3 time steps. The best tested
version was still ∼2.5 times slower to the target than the
Multi-Directional Sensing and Motion strategy. The worst
tested version was actually slower than the Random Motion
strategy. The performance of the bacterial model was directly
related to the sampling rate; the higher the sampling rate, the
faster the robots were able to reach the target site.

All of these results are statistically significant at a confi-
dence level of 95% or greater.

Fig. 2 depicts the results in detail.

IV. DISCUSSION & FUTURE WORK

The relatively complex and sophisticated structure of the
Multi-Directional Sensing and Motion model (Strategy 1),
helped the nano robots to perform their designated task very
efficiently and effectively. This model turned out to be the
most efficient goal-seeking behavior model. The performance
of this model is in line with our own prior expectations.

For the Bacterial Sensing and Motion model (Strategy 2),
we did not have any prior expectations regarding the results
from or the behavior of this model before we started working
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Swarm Intelligence for Cooperation of Bio-Nano Robots
using Quorum Sensing

Sreedevi Chandrasekaran and Dean F. Hougen

Abstract— Bio-nano robots are nano-scaled robots made from
biological components like proteins and DNA structures. Their
nano-scaled size, ready availability (in nature), and high effi-
ciency make them perfect tools for diagnosis and therapeutic
treatments in nano-medicine. Due to their nano-scaled size,
the intelligence of each individual nano robot is small when
compared to that of the collection of nano robots acting together
to accomplish the given task. This group intelligence, called
swarm intelligence, helps the nano robots do their task more
effectively, more quickly, and with fewer other resources. The
coordination to accomplish the given task can be achieved by
these nano robots through quorum sensing. Quorum sensing
is the ability of nano robots to communicate and coordinate
behavior via signaling molecules. The whole scenario of com-
munication and coordination can be done using these nano-
scaled robots and the results are studied using simulation at a
high level of abstraction.

I. INTRODUCTION

A robot is an autonomous physical device where sensing
and actions are coupled by intelligent decisions [1]. A
bio-nano robot is a nano-scaled biologically-based robot.
Constructing nano-robots using biological components seems
promising due to current advancements in nanotechnol-
ogy [2]. Due to their nano-scale size and biological nature,
these bio-nano robots are ideal tools for future applications
such as nano-medicine, environmental remediation, and pro-
duction of alternative energy sources.

Much related work has been done in cooperative mo-
bile robotics using biological inspiration, which is also a
backbone of our own research work. Cao et al. provide
an excellent overall view of different methods used in
cooperative mobile robotics research [3]. Lewis and Bekey
have considered swarm intelligence and chemical signaling
techniques for nano-scaled robots applied to the problem
of tumor removal [4]. They have introduced the concept of
chemical guideposts, which they use with their simulated
nano-robots to speed their navigation to the target at the cost
of increased complexity in the nano-robots themselves.

There are many other interesting related works using sim-
ilar concepts for cooperative robots using micro- and macro-
scale physical devices. Some researchers have adopted simi-
lar means for robot communication using virtual pheromones
(e.g., [5]). Parker et al. [6] investigate cooperative behavior of
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robot systems and find that the performance is of the system
changes greatly by varying the quorum threshold value.

The research presented here will help future bio-nano
robot designers and developers to decide among various
design strategies before they start constructing these types
of bio-nano robots for real world applications.

A. Methods for Nano Intelligence

Unlike traditional robots, bio-nano robots require tech-
niques such as swarm intelligence and quorum sensing for
efficient performance because of their space limitations.

1) Swarm Intelligence: Every nano-robot performs the
same set of tasks to accomplish a goal, for example, finding
a tumor site in an affected individual. Instead of doing the
difficult task on it’s own, nano-robots can communicate and
coordinate as a group to accomplish the desired goal. This
collective behavior, that emerges from a group of individually
insignificant agents, is called swarm intelligence [7]. Swarm
intelligence happens widely in nature, for example, ant
foraging, fish schooling, and bird flocking. All these activities
emerge as a result of individuals working within groups.
Each individual in the group coordinates with others so as
accomplish difficult tasks such as finding food, finding secure
places, and migrating to breeding grounds.

2) Quorum Sensing: Quorum sensing is the ability of bac-
teria to communicate and coordinate behavior via signaling
molecules [8]. Quorum sensing is a highly evolved charac-
teristic among nano- and micro-scaled organisms and is an
effective tool for a wide variety of activities. For example,
communication in a bacterial colony during infecting a host
body is accomplished using chemical signals.

Here we commandeer the innate quorum sensing chemical
dispersion and sensing abilities of bacteria and harness them
to a new end—collaborative goal seeking. The new group
coordination behavior of our nano-robots emerges based on
this communication process through chemical signaling.

Swarm intelligence and quorum sensing techniques to-
gether constitute the basis for new emergent behaviors for the
efficient performance of nano-robots in real world applica-
tions. On deployment, each nano robot could swim and start
looking for the target with target-specific receptors present
on it’s body surface. On reaching the target, a nano robot
could release chemical signals in its environment which can
be received by other nano robots to help them in homing
to that specific target. As the signal strength increases and
reaches a threshold value in the environment, the nano robots
could know that there are enough robots present in the target
site that they could now perform their designated task (say,

151-4244-0057-0/06/$20.00 ©2006 IEEE.
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“Counting and Calculating”
Swarm Intell (2010) 4: 199–220 207

Fig. 2 This figure illustrates the principle behind analog consensus estimation (ACE). Each robot maintains
its own quorum and kin index, both of which decay exponentially at the same rate. A robot increments its
kin index every time that a teammate is encountered. The quorum index is incremented only by deliberating
robots, after they have encountered a teammate that agrees that the current task is complete. The ratio of the
peak equilibria of a robot’s quorum and kin indices approximates the apparent consensus

Assume that each robot in a well-stirred dec-MRS will encounter one of its teammates
every T0 seconds on average. Each robot therefore will increment its kin index approxi-
mately every T0 seconds. Each deliberating robot will tend to encounter an agreeing team-
mate every T0/Ca seconds on average, and so they will increment their quorum indices at
this rate. It was shown in Parker (2009) that the peak equilibria of the quorum and kin indices
(qequ and kequ, respectively) are given by

qequ = ∆

1 − e
−T0
τCa

≈ ∆
τCa

T0
,

(2)

kequ = ∆

1 − e
−T0

τ

≈ ∆
τ

T0
.

The ratio of a deliberating robot’s two indices’ peak values at equilibria, qequ
kequ

, approxi-
mates the apparent consensus, Ca . In Fig. 2, the quorum index is incremented half as often
as the kin index; its peak value at equilibrium is approximately 50% of that of the latter.
The accuracies of the rightmost terms of (2) increase with τ , making the deliberating ro-
bots’ estimates of Ca more precise as the indices are made to decay more slowly relative to
the average rate at which teammates are encountered. The price of the improved accuracy
achieved by increasing τ is that indices will take longer to reach their equilibria, increas-
ing the amount of time required to compute C̃a . Note that Fig. 2 is intended to illustrate
the principle behind ACE. A robot’s two indices would not in practice be incremented at
perfectly regular intervals. In practice, the kin index should be allowed to reach equilibrium
before beginning to collect teammate opinions. Otherwise, if the first teammate encountered
by a robot also was deliberating, the robot’s first estimate of apparent consensus would be
100%,5 guaranteeing commitment regardless of the actual value Ca .

5Both k(t) and q(t) would have been zero prior to the reception of the opinion, and then both would be
incremented by ∆, yielding C̃a = ∆

∆ = 100%.

Musco, Su, and Lynch (2017, PNAS) [BDA 2016]
Parker and Zhang (2010, Swarm Int.)
Parker and Zhang (2009, IEEE/ASME Trans. Mechatronics)
Parker and Zhang (IROS 2004)

“Counting and Thresholding”

with a working heuristic function or collect accurate infor-
mation about the state of the network.

The solution we propose for such networks is to create
a system that can control the number of servers deployed on
the network dynamically, adapting to the ever-changing en-
vironment. In order to work in the context of an agent-based
system, a control system should be distributed and decen-
tralized without a single point of failure. By distributed, we
mean that the system should be able to use the underlying
network to parallelize problem solving on multiple hosts.
By decentralized, we mean that the system should avoid
reliance on a single node, and should allow each agent to
act independently. The emergent behavior resulting from
the individual localized control decisions ideally will yield
a sufficiently optimal solution.

3.2. Biological Inspiration

Leptothorax albipennis is a relatively small ant with a mod-
est colony size. They nest in small natural crevices, hol-
low sticks or other small places that are often damaged by
weather or natural decomposition. As a result, the whole
colony must move to a new nest site. In the process of esti-
mating the quality of a new site, the ants observe a quorum
number. If the quorum number of nest mates is achieved
at a new location, the migration occurs [25]. It is not nec-
essary for an ant to count the number of nest mates in this
particular site, but rather they can observe some parameter
correlated to it. According to Pratt et al. [24], such a param-
eter for each ant is a frequency of encounters with other ants
at a given location. Seeley suggests that some social insects
can sense the time intervals [26].

Frequency can be estimated by the following two thresh-
olds model. As an ant enters a potential nest site her inter-
nal state is at some neutral level. As she randomly nav-
igates a site, that state declines over time, but receives a
small boost every time she meets a nest mate. Whenever
the upper threshold value is exceeded, a positive decision
is made and the ant begins a migration process. When the
lower threshold is crossed, a negative decision is made and
the ant continues to recruit others to evaluate the given site.
The model is illustrated in Figure 1(a).

3.3. Formal Model

A similar method can be used by mobile agents to estimate
(and manage) a number of services in a MAS deployed over
a MANET.

The internal state variable v of the artificial ant is initial-
ized to the desired target time interval t. It is then reset to
t every time the ant takes the action of starting or shutting
down a service. As the ant traverses the network randomly,
it keeps track of the time elapsed since it has last seen the

upper threshold

lower threshold

positive�
decision

negative�
decision

internal state indicator

(a)

MANAGE()
v = t

last = CurrentT ime()
while true do

migrate()
v = v ° (CurrentT ime()° last)
last = CurrentT ime()
if GetService(CurrentHost) =“managed service” then

v = v + t

if v > UpperThreshold then

RemoveService(CurrentHost,“managed service”)
v = t

end if

else

if v < LowerThreshold then

AddService(CurrentHost,“managed service”)
v = t

end if

end if

end while

(b)

Figure 1. Two thresholds decision model illustration (a) and
algorithm (b).

service. It does this by decrementing v by one for each mil-
lisecond of elapsed real time. Every time the ant encounters
the service, its state v is increased by a value of t (v = v+t).
If v falls below a bound called the lower threshold, the ant
starts another instance of the service on the current host. If
v exceeds a bound called the upper threshold, the ant will
shut down the service on that host. The behavior of the ant
is defined more formally by the MANAGE() algorithm on
the Figure 1(b).

4. EXPERIMENTAL RESULTS

In order to determine the stability of this approach to various
disturbances, we performed a set of simulated as well as live
network experiments. In all of the experiments, we had 2
services located on the network:

1. The managed service, M , whose number and location
of instances were subject to management by the ant
agent;

2. The unmanaged service, U , a single instance of which
was placed at the random node in the beginning of the
experiment.

Peysakhov and Regli (SIS 2005)

Approaches from Engineering and Computer Science
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agents collide with fewer individuals and collide multiple times
with those individuals that they do encounter, making encounter
rates a less reliable estimate of population density.

Mathematically speaking, on a graph with a fast mixing time
(7), like the complete graph, each agent’s location is only weakly
correlated with its previous locations. This ensures that collisions
are also weakly correlated between rounds, and encounter rate
serves as a very accurate estimate of density. The grid graph, on
the other hand, is slow mixing: Agent positions and hence col-
lisions are highly correlated between rounds, lowering the accu-
racy of encounter-rate-based estimation.

Results

Surprisingly, despite the high correlation between collisions,
we show that encounter rate-based density estimation on the
grid is nearly as accurate as on the complete graph. After just
O
�
log(1/�) log log(1/�) log(1/d✏)/d✏2

�
rounds, each agent’s

encounter rate is a (1± ✏) approximation to d with probability
1� � (Theorem 1). This matches performance on the complete
graph up to a log log(1/�) log(1/d✏) factor.

Technically, to bound accuracy on the grid, we obtain moment
bounds on the number of times that two randomly walking agents
collide over a set of rounds (Lemma 5). These bounds also apply
to the number of equalizations (returns to origin) of a single
walk. While expected random walk hitting times, return times,
and collision rates are well studied for many graphs, including
grid graphs (7–9), higher moment bounds and high probability
results are much less common.

Our moment bounds show that, while the grid graph is slow
mixing, it has strong local mixing. That is, random walks tend
to spread quickly over a local area and not repeatedly cover
the same nodes, making random walk-based density estimation
accurate. Significant work has focused on showing that random
walk sampling is nearly as good as independent sampling for fast-
mixing expander graphs (10, 11). We extend this type of analysis
to slowly mixing graphs, showing that strong local mixing is suffi-
cient in many applications.

The key to the local mixing property of the grid is an upper
bound on the probability that two random walks starting from
the same position recollide (or that a single random walk equal-
izes) after a certain number of steps (Lemma 3). We show that
recollision probability bounds imply collision moment bounds on
general graphs, and apply this technique to extend our results to
d -dimensional grids, regular expanders, and hypercubes. We dis-
cuss applications of our bounds to the task of estimating the size
of a social network using random walks (12), obtaining improve-
ments over prior work for networks with relatively slow global
mixing times but strong local mixing. We also discuss connections
to density estimation by robot swarms and random walk-based
sensor network sampling (13, 14).

Theoretical Model for Density Estimation
We consider a set of agents populating a 2D torus with A nodes
(dimensions

p
A⇥

p
A). At each time step, each agent has an

associated ordered pair position , which gives its coordinates on
the torus. We assume that A is large—larger than the area agents
traverse over the runtimes of our algorithms. We believe the
torus model successfully captures the dynamics of density estima-
tion on a surface, while avoiding complicating factors of bound-
ary behavior on a finite grid.

Initially, each agent is placed independently at a uniform ran-
dom node in the torus. Computation proceeds in discrete, syn-
chronous rounds. Each agent updates its position with a step cho-
sen uniformly at random from {(0, 1), (0,�1), (1, 0), (�1, 0)} in
each round. Of course, in reality, ants do not move via pure ran-
dom walk; observed encounter rates seem to actually be lower
than predicted by a pure random walk model (6, 15). How-
ever, we feel that our model sufficiently captures the highly ran-

dom movement of ants while remaining tractable to analysis
and applicable to ant-inspired random walk-based algorithms.
Extending our work to more realistic models of ant movement
would be an interesting next direction.

Aside from the ability to move in each round, agents can
sense the number of agents other than themselves at their posi-
tion at the end of each round, formally through the function
count(position). We say that two agents collide in round r if they
have the same position at the end of the round. Outside of col-
lision counting, agents have no means of communication. They
are anonymous (cannot uniquely identify each other) and exe-
cute identical density estimation routines. A basic illustration of
our model is depicted in Fig. 1.

The Density Estimation Problem
Let (n +1) be the number of agents, and define population den-
sity as d

def
= n/A. Each agent’s goal is to estimate d to (1± ✏)

accuracy with probability at least 1� � for ✏, � 2 (0, 1), that is, to
return an estimate d̃ with P

h
d̃ 2 [(1� ✏)d , (1 + ✏)d ]

i
� 1 � �.

As a technicality, with n + 1 agents, we define d =n/A instead
of d =(n + 1)/A, for convenience of calculation. In the natural
case, when n is large, the distinction is unimportant.

Local vs. Global Density. The problem described above requires
estimating the global population density. We assume that agents
are initially distributed uniformly at random on the torus, which
is critical for fast global density estimation: When agents are uni-
formly distributed, the local density in a small radius around their
starting position reflects the global density with good probabil-
ity. Of course, in nature, ants are not typically uniformly dis-
tributed in the nest or surrounding areas. Additionally, they are
often interested in estimating local population densities, e.g., in a
new nest site when house-hunting (2) or around a nest entrance

Fig. 1. A basic illustration of our computational model. Each agent (ant)
may move to a random adjacent position on the 2D torus in each round
(illustrated by the red arrows). A collision occurs when two or more agents
are located at the same position. The agents detect collisions through the
count(position) function, which returns the number of other agents at their
current position. In this illustration, position is given as the (x, y) position,
with the bottom left corner corresponding to (1, 1). However, the precise
convention used is unimportant.

Musco et al. PNAS | October 3, 2017 | vol. 114 | no. 40 | 10535

when estimating the number of successful foragers for task
allocation (4).

We view our work as a first step toward a theoretical under-
standing of density estimation, and we focus on the global density
for simplicity. Removing our assumption of uniformly distributed
agents and understanding local density estimation are important
directions for future work.

Random Walk-Based Density Estimation on the 2D Torus
As discussed, the challenge in analyzing random walk-based den-
sity estimation on the torus arises from correlations between col-
lisions of nearby agents. If we do not restrict agents to random
walking, and instead allow each agent to take an arbitrary step
in each round, they can avoid collision correlations by splitting
into “stationary” and “mobile” groups and counting collisions
only between members of different groups. This allows them to
essentially simulate independent sampling of grid locations to
estimate density. This method is simple to analyze (SI Appendix,
section S1), but it is not “natural” in a biological sense or useful
for the applications we present. Further, independent sampling is
unnecessary! Algorithm 1 describes a simple random walk-based
approach that gives a nearly matching bound.

Our main theoretical result follows; its proof appears at the
end of this section, after a number of preliminary lemmas.
Throughout our analysis, we take the viewpoint of a single agent
executing Algorithm 1.

Theorem 1 (Random Walk Sampling Accuracy Bound). After run-
ning for t rounds, assuming t A, an agent executing Algorithm 1
returns d̃ such that, for any �> 0, with a probability of �1 � �,
d̃ 2 [(1 � ✏)d , (1 + ✏)d ] for ✏=⇥

⇣p
log(1/�) log(2t)/td

⌘
. In

other words, for any ✏, � 2 (0, 1) if t =⇥
�
log(1/�) log log(1/�)

log(1/d✏)/d✏2
�
, d̃ is a (1± ✏) multiplicative estimate of d with a

probability of �1� �.
Theorem 1 focuses on the density estimate of a single agent

executing Algorithm 1. However, we note that, if we set �=
�0/n , then, by a union bound, all n agents will have d̃ 2 [(1 �
✏)d , (1 + ✏)d ] with probability �0. The required running time t

will depend just logarithmically on �0 and n .

Correctness of Encounter Rate in Expectation. The first step in
proving Theorem 1 is to show that the encounter rate d̃ is an
unbiased estimator of d . This result, in fact, holds for any ants
randomly walking on any regular graph.

Lemma 2 (Unbiased Estimator). Ed̃ = d .

Proof. We can decompose the collision bound c maintained
by each agent in Algorithm 1 as the sum of collisions with dif-
ferent agents over different rounds. Specifically, give the n other
agents arbitrary labels 1, 2, ...,n and let cj (r) equal 1 if the agent
collides with agent j in round r , and 0 otherwise. By linearity of
expectation, Ec =

Pn
j=1

Pt
r=1 Ecj (r).

Since each agent is initially at a uniform random location and,
after any number of steps, is still at a uniform random loca-

tion, for all j , r , Ecj (r)= 1/A. Thus, Ec=nt/A= dt and Ed̃ =
Ec/t = d .

We note that the torus is bipartite, and hence two agents ini-
tially located an odd number of steps away from each other will
never meet via random walking. However, this fact does not
change the expectation of d̃ computed above and, in fact, does
not affect any of our following proofs.

With Lemma 2 in place, it remains to show that the encounter
rate is close to its expectation with high probability and so pro-
vides a good estimate of density. To do this, we must bound
the strength of correlations between collisions of nearby agents
in successive rounds, which can decrease the accuracy of the
encounter rate-based estimate.

A Recollision Probability Bound. The key to bounding collision
correlations is bounding the probability of a recollision between
two agents in round r+m , assuming a collision in round r , which
we do in this section.

Let cj =
Pt

r=1 cj (r) be the total number of collisions with
agent j . Due to the initial uniform distribution of the agents, the
cj are all independent and identically distributed.

Each cj is the sum of highly correlated random variables;
due to the slow mixing of the grid, if two agents collide at
round r , they are much more likely to collide in successive
rounds. However, by bounding this recollision probability, we
are able to give strong moment bounds for the distribution of
each cj . We bound not only its variance but all higher moments.
This allows us to show that the average d̃ =1/t

Pn
j=1 cj

falls close to its expectation d with high probability, giving
Theorem 1.

Lemma 3 (Recollision Probability Bound). Consider two agents a1
and a2 randomly walking on a 2D torus of dimensions

p
A⇥

p
A.

If a1 and a2 collide in round r , for any m � 0, the probability that
a1 and a2 collide again in round r+m is ⇥ (1/m + 1)+O (1/A).

Fig. 2. A schematic of the proof of Lemma 3. We argue that the recollision
probability of two agents after m steps (shown in red and blue) is equivalent
to the probability that a length 2m random walk (shown in gray) returns to
its origin. We then argue that the random walk is likely to take roughly m
steps in both the x and y directions and hence has zero displacement in each
direction with probability ⇥(1/

p
m).

10536 | www.pnas.org/cgi/doi/10.1073/pnas.1706439114 Musco et al.

• Nearby agents collide repeatedly
• Cannot recognize duplicate collisions
• Yet counting algorithm will converge to actual density

Number of rounds t
chosen by ant/evolution.
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agents collide with fewer individuals and collide multiple times
with those individuals that they do encounter, making encounter
rates a less reliable estimate of population density.

Mathematically speaking, on a graph with a fast mixing time
(7), like the complete graph, each agent’s location is only weakly
correlated with its previous locations. This ensures that collisions
are also weakly correlated between rounds, and encounter rate
serves as a very accurate estimate of density. The grid graph, on
the other hand, is slow mixing: Agent positions and hence col-
lisions are highly correlated between rounds, lowering the accu-
racy of encounter-rate-based estimation.

Results

Surprisingly, despite the high correlation between collisions,
we show that encounter rate-based density estimation on the
grid is nearly as accurate as on the complete graph. After just
O
�
log(1/�) log log(1/�) log(1/d✏)/d✏2

�
rounds, each agent’s

encounter rate is a (1± ✏) approximation to d with probability
1� � (Theorem 1). This matches performance on the complete
graph up to a log log(1/�) log(1/d✏) factor.

Technically, to bound accuracy on the grid, we obtain moment
bounds on the number of times that two randomly walking agents
collide over a set of rounds (Lemma 5). These bounds also apply
to the number of equalizations (returns to origin) of a single
walk. While expected random walk hitting times, return times,
and collision rates are well studied for many graphs, including
grid graphs (7–9), higher moment bounds and high probability
results are much less common.

Our moment bounds show that, while the grid graph is slow
mixing, it has strong local mixing. That is, random walks tend
to spread quickly over a local area and not repeatedly cover
the same nodes, making random walk-based density estimation
accurate. Significant work has focused on showing that random
walk sampling is nearly as good as independent sampling for fast-
mixing expander graphs (10, 11). We extend this type of analysis
to slowly mixing graphs, showing that strong local mixing is suffi-
cient in many applications.

The key to the local mixing property of the grid is an upper
bound on the probability that two random walks starting from
the same position recollide (or that a single random walk equal-
izes) after a certain number of steps (Lemma 3). We show that
recollision probability bounds imply collision moment bounds on
general graphs, and apply this technique to extend our results to
d -dimensional grids, regular expanders, and hypercubes. We dis-
cuss applications of our bounds to the task of estimating the size
of a social network using random walks (12), obtaining improve-
ments over prior work for networks with relatively slow global
mixing times but strong local mixing. We also discuss connections
to density estimation by robot swarms and random walk-based
sensor network sampling (13, 14).

Theoretical Model for Density Estimation
We consider a set of agents populating a 2D torus with A nodes
(dimensions

p
A⇥

p
A). At each time step, each agent has an

associated ordered pair position , which gives its coordinates on
the torus. We assume that A is large—larger than the area agents
traverse over the runtimes of our algorithms. We believe the
torus model successfully captures the dynamics of density estima-
tion on a surface, while avoiding complicating factors of bound-
ary behavior on a finite grid.

Initially, each agent is placed independently at a uniform ran-
dom node in the torus. Computation proceeds in discrete, syn-
chronous rounds. Each agent updates its position with a step cho-
sen uniformly at random from {(0, 1), (0,�1), (1, 0), (�1, 0)} in
each round. Of course, in reality, ants do not move via pure ran-
dom walk; observed encounter rates seem to actually be lower
than predicted by a pure random walk model (6, 15). How-
ever, we feel that our model sufficiently captures the highly ran-

dom movement of ants while remaining tractable to analysis
and applicable to ant-inspired random walk-based algorithms.
Extending our work to more realistic models of ant movement
would be an interesting next direction.

Aside from the ability to move in each round, agents can
sense the number of agents other than themselves at their posi-
tion at the end of each round, formally through the function
count(position). We say that two agents collide in round r if they
have the same position at the end of the round. Outside of col-
lision counting, agents have no means of communication. They
are anonymous (cannot uniquely identify each other) and exe-
cute identical density estimation routines. A basic illustration of
our model is depicted in Fig. 1.

The Density Estimation Problem
Let (n +1) be the number of agents, and define population den-
sity as d

def
= n/A. Each agent’s goal is to estimate d to (1± ✏)

accuracy with probability at least 1� � for ✏, � 2 (0, 1), that is, to
return an estimate d̃ with P

h
d̃ 2 [(1� ✏)d , (1 + ✏)d ]

i
� 1 � �.

As a technicality, with n + 1 agents, we define d =n/A instead
of d =(n + 1)/A, for convenience of calculation. In the natural
case, when n is large, the distinction is unimportant.

Local vs. Global Density. The problem described above requires
estimating the global population density. We assume that agents
are initially distributed uniformly at random on the torus, which
is critical for fast global density estimation: When agents are uni-
formly distributed, the local density in a small radius around their
starting position reflects the global density with good probabil-
ity. Of course, in nature, ants are not typically uniformly dis-
tributed in the nest or surrounding areas. Additionally, they are
often interested in estimating local population densities, e.g., in a
new nest site when house-hunting (2) or around a nest entrance

Fig. 1. A basic illustration of our computational model. Each agent (ant)
may move to a random adjacent position on the 2D torus in each round
(illustrated by the red arrows). A collision occurs when two or more agents
are located at the same position. The agents detect collisions through the
count(position) function, which returns the number of other agents at their
current position. In this illustration, position is given as the (x, y) position,
with the bottom left corner corresponding to (1, 1). However, the precise
convention used is unimportant.
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Two connectionist frameworks, GRAIN (J. L. McClelland, 1993) and brain-state-in-a-box (J. A.
Anderson, 1991), and R. Ratcliff s (1978) diffusion model were evaluated using data from a signal
detection task. Dependent variables included response probabilities, reaction times for correct and error
responses, and shapes of reaction-time distributions. The diffusion model accounted for all aspects of the
data, including error reaction times that had previously been a problem for all response-time models. The
connectionist models accounted for many aspects of the data adequately, but each failed to a greater or
lesser degree in important ways except for one model that was similar to the diffusion model. The
findings advance the development of the diffusion model and show that the long tradition of reaction-
time research and theory is a fertile domain for development and testing of connectionist assumptions
about how decisions are generated over time.

Research aimed at investigating how information is processed
over time has had a long and influential history in psychology. In
1938 in his general textbook, Woodworm discussed simple and
choice reaction time, the behaviors and shapes of reaction-time
distributions, individual differences in reaction time, and the ef-
fects on reaction time of experimental variables such as stimulus
intensity. Several of these topics are raised again in this article. In
the 1960s, when the cognitive revolution gave rise to modern
cognitive psychology, reaction time entered the spotlight as a
major dependent variable. Since then, considerable effort has been
devoted to the development of theories to explain how information
is processed over time to yield mean response times, distributions
of response times, and accuracy levels. Current theoretical issues
include, for example, serial versus parallel processes and contin-
uous versus discrete processes, and efforts continue toward com-
prehensive theories of the time course of processing. A summary
of the state of reaction-time theory is presented in Luce (1986).
Perhaps the main difficulty in recent modeling has been that two
dependent variables, reaction time and the probability of correct
versus error responses, have to be modeled in the same, integrated
framework.
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Connectionist models are a relatively new class of models and a
surge in development and testing of them has taken place in the
last 10 years. These models offer the promise of explanations of
how cognitive tasks are learned. For most of the models, learning
is the result of many individual trials with stimuli, each trial with
feedback about whether the model's response was correct. The
processes by which the response to a stimulus is chosen are usually
assumed to be parallel, interactive, nonlinear, and continuous.
These processing characteristics are theoretical choices that have
been well examined in reaction-time modeling. Therefore, it is
potentially fruitful for connectionist models to meet reaction-time
models in a joint effort at theory development and competitive
model testing and evaluation.

Carrying reaction-time research forward to meet the relatively
new domain of connectionist modeling was one purpose of the
investigations described in this article. Specifically, we asked
whether connectionist models could accommodate the wide-
ranging kinds of data that have been critical in the reaction-time
domain and at the same time account for learning. A second
purpose was to test and further develop a more standard model,
Ratcliffs (1978) diffusion model. Standard information-
processing models and connectionist models have different in-
sights to offer, and the fullest advantage of these insights can be
gained when both kinds of models are pushed as far as they
possibly can be. This goal can best be accomplished in an arena of
investigation that allows simultaneous testing of both kinds of
models. For the research described in this article, the arena we
chose was a simple signal detection paradigm.

Connectionist models assume that the decision required on each
trial of an experimental task comes about by processes that inte-
grate and accumulate information over time. For early connection-
ist models, an Achilles' heel was their failure to match this
assumption to specific mechanisms that could predict a full range
of empirical measures of the time course of processing, including
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condition, so there are 96 different values of the parameter v. The
two variability parameters are s, the standard deviation of drift
within an individual process, and TJ, the standard deviation in mean
drift rate across different trials of the same stimulus. The fourth
parameter of the model is an encoding and response-time param-
eter Ter that represents the nondecision components of reaction
time.

The parameter i (representing variability of drift within a trial)
was set to the value 0.1 for all the fits of the diffusion model to the
data; it was not a free parameter. This is because 5 is a scaling
parameter; if s is altered, the other parameters of the model can be
multiplied or divided by the ratio of the old and new values of s to
produce exactly the same finishing time distributions and response
probabilities as before 5 was altered. The value 0.1 was chosen
because it is close to the value used in earlier applications of the
model, and so comparisons can be made between parameter values
here and in those applications (Ratcliff, 1978, 1981, 1988).

We did not fit the model to all 96 experimental conditions.
Instead, we fit the model to three representative conditions, ad-
justing the parameters a, TJ, Ter, and three values of drift rate v (one
for each condition) to produce the best fit of model to data from the
three conditions. Then, with a, TJ, and Ter held constant, v was
varied to produce predictions for all the other 93 conditions (the
data were actually collapsed into 10 groups). The three conditions
used in fitting were chosen to represent widely spaced parts of the
latency-response probability function (Figure 3). For example, for
Subject 1, the values of response probability chosen
were 0.965, 0.463, and 0.143. Each of these three values actually
corresponds to two sets of reaction-time data, the number for
which the probability of a high response equaled the chosen value
and the number for which the probability of a low response
equaled the chosen value. The fitting program adjusted the three
values of v plus the three other parameters (a, 17, and Tfr) to
minimize a sum of squares using a standard function minimization
routine. The data for the different subjects were fit individually, so
the three values of v plus the other three parameters all were free
to vary across subjects. The parameter estimates are shown in
Table 1.

Respond High

Table 1
Parameters of the Diffusion Model Used in Fitting for the Four
Subjects in Experiment 1 and 2 Subjects in Experiment 2

Respond Low
Parameters of the Diffusion Model:
a = Boundary position
z = starting point = a/2
v = mean drift rate, one for each condition
s = standard deviation in drift within a trial
Ter = encoding and response time
i\ = standard deviation in mean drift rate

from trial to trial (drift is N(v,n))
sz=standard deviation in starting point

(starting point is N(z,sz))

Figure 7. The diffusion model and parameters of the model.

Subject (S)

Experiment 1:
Experiment 1:
Experiment 1:
Experiment 1:
Experiment 1:
Experiment 2:
Experiment 2:

SI
S2 (first 3 sessions)
S2 (last 3 sessions)
S3
S4
SI
S2

a

.115

.151

.141

.150

.065

.117

.103

z

a/2
a/2
a/2
a/2
a/2
.040
.039

Ter

.256

.323

.335

.313

.266

.206

.306

T)

.112

.088

.174

.142

.055

.082

.081

Note, a, z, Ter, and 7) are parameters.

The sums-of-squares function for minimization was constructed
as follows.' First, the empirical reaction-time distributions were fit
with an ex-Gaussian distribution, that is, a convolution of normal
and exponential distributions. The ex-Gaussian has been shown to
provide a good summary of empirical reaction-time distributions
(Ratcliff, 1978, 1979; Ratcliff & Murdock, 1976), and its param-
eters have been used to describe the shape of the distribution.
Theoretical distributions were then generated by the diffusion
model, and these theoretical distributions were also fit with an
ex-Gaussian distribution. The two parameters (/j, and T) of the
ex-Gaussians served as a meeting point between the empirical data
and the theoretical predictions from the model (ju, roughly repre-
sents the position of the leading edge of the distribution, and T
represents the extent of the tail of the distribution). The sum-of-
squares function was the sum of squared differences between the
theoretically derived and empirically derived values of the ex-
Gaussian summary parameters plus the sum of squared differences
in the theoretical and empirical values of response probability (all
weighted by standard errors). The fitting routine minimized the
sums of squares as a function of the diffusion model parameters
(see the Appendix for a full presentation). (The ex-Gaussian has a
third parameter, cr, which roughly specifies the rise in the leading
edge of the distribution, but it is not needed because the diffusion
model produces a rise in the reaction-time distribution that is close
to the rise observed in the experimental data.) All fits of the model
shown in the figures are direct fits of the model to the data. In more
recent work, we have moved to fitting the reaction-time distribu-
tions directly using quantiles of the distributions. The obtained fits
are not different in the two procedures.

As pointed out, the three values of v for each subject were
merely representative of all of the 96 experimental conditions and
served the purpose of summarizing the range of data and allowing
the other three parameter values, a, T), and Ter to be fixed for the
subject. To sweep out all the conditions, v must be varied from
some very low value to some very high value. It turned out that all
of the conditions were accommodated by v ranging from — .4 to
+.4, where a drift rate of -.4 corresponded to less than 20

1 Note that setting up a successful run of the fitting process usually
requires one or more runs much of the way through the process before a
result can be obtained because the program is quite sensitive to the starting
values of the parameters. The initial parameter values have to be close to
the final values or else estimates start to diverge, numerical overflow or
underflow occurs, and the program terminates.
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condition, so there are 96 different values of the parameter v. The
two variability parameters are s, the standard deviation of drift
within an individual process, and TJ, the standard deviation in mean
drift rate across different trials of the same stimulus. The fourth
parameter of the model is an encoding and response-time param-
eter Ter that represents the nondecision components of reaction
time.

The parameter i (representing variability of drift within a trial)
was set to the value 0.1 for all the fits of the diffusion model to the
data; it was not a free parameter. This is because 5 is a scaling
parameter; if s is altered, the other parameters of the model can be
multiplied or divided by the ratio of the old and new values of s to
produce exactly the same finishing time distributions and response
probabilities as before 5 was altered. The value 0.1 was chosen
because it is close to the value used in earlier applications of the
model, and so comparisons can be made between parameter values
here and in those applications (Ratcliff, 1978, 1981, 1988).

We did not fit the model to all 96 experimental conditions.
Instead, we fit the model to three representative conditions, ad-
justing the parameters a, TJ, Ter, and three values of drift rate v (one
for each condition) to produce the best fit of model to data from the
three conditions. Then, with a, TJ, and Ter held constant, v was
varied to produce predictions for all the other 93 conditions (the
data were actually collapsed into 10 groups). The three conditions
used in fitting were chosen to represent widely spaced parts of the
latency-response probability function (Figure 3). For example, for
Subject 1, the values of response probability chosen
were 0.965, 0.463, and 0.143. Each of these three values actually
corresponds to two sets of reaction-time data, the number for
which the probability of a high response equaled the chosen value
and the number for which the probability of a low response
equaled the chosen value. The fitting program adjusted the three
values of v plus the three other parameters (a, 17, and Tfr) to
minimize a sum of squares using a standard function minimization
routine. The data for the different subjects were fit individually, so
the three values of v plus the other three parameters all were free
to vary across subjects. The parameter estimates are shown in
Table 1.
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Table 1
Parameters of the Diffusion Model Used in Fitting for the Four
Subjects in Experiment 1 and 2 Subjects in Experiment 2

Respond Low
Parameters of the Diffusion Model:
a = Boundary position
z = starting point = a/2
v = mean drift rate, one for each condition
s = standard deviation in drift within a trial
Ter = encoding and response time
i\ = standard deviation in mean drift rate

from trial to trial (drift is N(v,n))
sz=standard deviation in starting point
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Figure 7. The diffusion model and parameters of the model.
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Note, a, z, Ter, and 7) are parameters.

The sums-of-squares function for minimization was constructed
as follows.' First, the empirical reaction-time distributions were fit
with an ex-Gaussian distribution, that is, a convolution of normal
and exponential distributions. The ex-Gaussian has been shown to
provide a good summary of empirical reaction-time distributions
(Ratcliff, 1978, 1979; Ratcliff & Murdock, 1976), and its param-
eters have been used to describe the shape of the distribution.
Theoretical distributions were then generated by the diffusion
model, and these theoretical distributions were also fit with an
ex-Gaussian distribution. The two parameters (/j, and T) of the
ex-Gaussians served as a meeting point between the empirical data
and the theoretical predictions from the model (ju, roughly repre-
sents the position of the leading edge of the distribution, and T
represents the extent of the tail of the distribution). The sum-of-
squares function was the sum of squared differences between the
theoretically derived and empirically derived values of the ex-
Gaussian summary parameters plus the sum of squared differences
in the theoretical and empirical values of response probability (all
weighted by standard errors). The fitting routine minimized the
sums of squares as a function of the diffusion model parameters
(see the Appendix for a full presentation). (The ex-Gaussian has a
third parameter, cr, which roughly specifies the rise in the leading
edge of the distribution, but it is not needed because the diffusion
model produces a rise in the reaction-time distribution that is close
to the rise observed in the experimental data.) All fits of the model
shown in the figures are direct fits of the model to the data. In more
recent work, we have moved to fitting the reaction-time distribu-
tions directly using quantiles of the distributions. The obtained fits
are not different in the two procedures.

As pointed out, the three values of v for each subject were
merely representative of all of the 96 experimental conditions and
served the purpose of summarizing the range of data and allowing
the other three parameter values, a, T), and Ter to be fixed for the
subject. To sweep out all the conditions, v must be varied from
some very low value to some very high value. It turned out that all
of the conditions were accommodated by v ranging from — .4 to
+.4, where a drift rate of -.4 corresponded to less than 20

1 Note that setting up a successful run of the fitting process usually
requires one or more runs much of the way through the process before a
result can be obtained because the program is quite sensitive to the starting
values of the parameters. The initial parameter values have to be close to
the final values or else estimates start to diverge, numerical overflow or
underflow occurs, and the program terminates.
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Two connectionist frameworks, GRAIN (J. L. McClelland, 1993) and brain-state-in-a-box (J. A.
Anderson, 1991), and R. Ratcliff s (1978) diffusion model were evaluated using data from a signal
detection task. Dependent variables included response probabilities, reaction times for correct and error
responses, and shapes of reaction-time distributions. The diffusion model accounted for all aspects of the
data, including error reaction times that had previously been a problem for all response-time models. The
connectionist models accounted for many aspects of the data adequately, but each failed to a greater or
lesser degree in important ways except for one model that was similar to the diffusion model. The
findings advance the development of the diffusion model and show that the long tradition of reaction-
time research and theory is a fertile domain for development and testing of connectionist assumptions
about how decisions are generated over time.

Research aimed at investigating how information is processed
over time has had a long and influential history in psychology. In
1938 in his general textbook, Woodworm discussed simple and
choice reaction time, the behaviors and shapes of reaction-time
distributions, individual differences in reaction time, and the ef-
fects on reaction time of experimental variables such as stimulus
intensity. Several of these topics are raised again in this article. In
the 1960s, when the cognitive revolution gave rise to modern
cognitive psychology, reaction time entered the spotlight as a
major dependent variable. Since then, considerable effort has been
devoted to the development of theories to explain how information
is processed over time to yield mean response times, distributions
of response times, and accuracy levels. Current theoretical issues
include, for example, serial versus parallel processes and contin-
uous versus discrete processes, and efforts continue toward com-
prehensive theories of the time course of processing. A summary
of the state of reaction-time theory is presented in Luce (1986).
Perhaps the main difficulty in recent modeling has been that two
dependent variables, reaction time and the probability of correct
versus error responses, have to be modeled in the same, integrated
framework.
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Connectionist models are a relatively new class of models and a
surge in development and testing of them has taken place in the
last 10 years. These models offer the promise of explanations of
how cognitive tasks are learned. For most of the models, learning
is the result of many individual trials with stimuli, each trial with
feedback about whether the model's response was correct. The
processes by which the response to a stimulus is chosen are usually
assumed to be parallel, interactive, nonlinear, and continuous.
These processing characteristics are theoretical choices that have
been well examined in reaction-time modeling. Therefore, it is
potentially fruitful for connectionist models to meet reaction-time
models in a joint effort at theory development and competitive
model testing and evaluation.

Carrying reaction-time research forward to meet the relatively
new domain of connectionist modeling was one purpose of the
investigations described in this article. Specifically, we asked
whether connectionist models could accommodate the wide-
ranging kinds of data that have been critical in the reaction-time
domain and at the same time account for learning. A second
purpose was to test and further develop a more standard model,
Ratcliffs (1978) diffusion model. Standard information-
processing models and connectionist models have different in-
sights to offer, and the fullest advantage of these insights can be
gained when both kinds of models are pushed as far as they
possibly can be. This goal can best be accomplished in an arena of
investigation that allows simultaneous testing of both kinds of
models. For the research described in this article, the arena we
chose was a simple signal detection paradigm.

Connectionist models assume that the decision required on each
trial of an experimental task comes about by processes that inte-
grate and accumulate information over time. For early connection-
ist models, an Achilles' heel was their failure to match this
assumption to specific mechanisms that could predict a full range
of empirical measures of the time course of processing, including
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with a working heuristic function or collect accurate infor-
mation about the state of the network.

The solution we propose for such networks is to create
a system that can control the number of servers deployed on
the network dynamically, adapting to the ever-changing en-
vironment. In order to work in the context of an agent-based
system, a control system should be distributed and decen-
tralized without a single point of failure. By distributed, we
mean that the system should be able to use the underlying
network to parallelize problem solving on multiple hosts.
By decentralized, we mean that the system should avoid
reliance on a single node, and should allow each agent to
act independently. The emergent behavior resulting from
the individual localized control decisions ideally will yield
a sufficiently optimal solution.

3.2. Biological Inspiration

Leptothorax albipennis is a relatively small ant with a mod-
est colony size. They nest in small natural crevices, hol-
low sticks or other small places that are often damaged by
weather or natural decomposition. As a result, the whole
colony must move to a new nest site. In the process of esti-
mating the quality of a new site, the ants observe a quorum
number. If the quorum number of nest mates is achieved
at a new location, the migration occurs [25]. It is not nec-
essary for an ant to count the number of nest mates in this
particular site, but rather they can observe some parameter
correlated to it. According to Pratt et al. [24], such a param-
eter for each ant is a frequency of encounters with other ants
at a given location. Seeley suggests that some social insects
can sense the time intervals [26].

Frequency can be estimated by the following two thresh-
olds model. As an ant enters a potential nest site her inter-
nal state is at some neutral level. As she randomly nav-
igates a site, that state declines over time, but receives a
small boost every time she meets a nest mate. Whenever
the upper threshold value is exceeded, a positive decision
is made and the ant begins a migration process. When the
lower threshold is crossed, a negative decision is made and
the ant continues to recruit others to evaluate the given site.
The model is illustrated in Figure 1(a).

3.3. Formal Model

A similar method can be used by mobile agents to estimate
(and manage) a number of services in a MAS deployed over
a MANET.

The internal state variable v of the artificial ant is initial-
ized to the desired target time interval t. It is then reset to
t every time the ant takes the action of starting or shutting
down a service. As the ant traverses the network randomly,
it keeps track of the time elapsed since it has last seen the

upper threshold

lower threshold

positive�
decision

negative�
decision

internal state indicator

(a)

MANAGE()
v = t

last = CurrentT ime()
while true do

migrate()
v = v ° (CurrentT ime()° last)
last = CurrentT ime()
if GetService(CurrentHost) =“managed service” then

v = v + t

if v > UpperThreshold then

RemoveService(CurrentHost,“managed service”)
v = t

end if

else

if v < LowerThreshold then

AddService(CurrentHost,“managed service”)
v = t

end if

end if

end while

(b)

Figure 1. Two thresholds decision model illustration (a) and
algorithm (b).

service. It does this by decrementing v by one for each mil-
lisecond of elapsed real time. Every time the ant encounters
the service, its state v is increased by a value of t (v = v+t).
If v falls below a bound called the lower threshold, the ant
starts another instance of the service on the current host. If
v exceeds a bound called the upper threshold, the ant will
shut down the service on that host. The behavior of the ant
is defined more formally by the MANAGE() algorithm on
the Figure 1(b).

4. EXPERIMENTAL RESULTS

In order to determine the stability of this approach to various
disturbances, we performed a set of simulated as well as live
network experiments. In all of the experiments, we had 2
services located on the network:

1. The managed service, M , whose number and location
of instances were subject to management by the ant
agent;

2. The unmanaged service, U , a single instance of which
was placed at the random node in the beginning of the
experiment.

Peysakhov and Regli (SIS 2005)

http://doi.org/10.1109/sis.2005.1501643


MODELING REACTION TIME 265

maximize the total number of points earned over the course of the exper-
iment. The points were not used to add to the payment rate for the
experiment.

A trial began with the presentation of the asterisks. They remained on the
screen until the subject responded, at which point the screen was erased. If
the response was correct, a 700-ms waiting period ensued and then the
asterisks for the next trial were presented. If the response was in error, the
message "ERROR -1 POINT" appeared on the screen for 500 ms, followed
by the next trial 700 ms later. Each block of 50 trials was completed in less
than 5 min. Between each two blocks, the subject was encouraged to take
a brief rest if he or she so desired.

Design. Each subject performed in 11 sessions (except Subject 1, who
performed in 10 sessions) over approximately 3 weeks. Each session was
composed of 24 blocks of 50 trials. Within a block, one half of the stimuli
were sampled from the low distribution and one half were sampled from
the high distribution. There were a total of 1,200 observations per session
per subject. The first session was not used in any analysis (except for
Subject 1), resulting in a total of 12,000 observations per subject. The first
block of trials in each session was discarded from the analyses.

Results

In the data analyses, all of the trials with response times less
than 200 ms or greater than 3000 ms were discarded (these
constituted about .25% of the data).

The four subjects showed large individual differences in perfor-
mance. One subject produced quite long reaction times (in the
400-800-ms range), another produced very short reaction times
(in the 300-380-ms range), and the other two were intermediate.
From a modeling perspective, this range of behaviors is a positive
aspect of the data because it requires the models to have flexibility.
If the models were too constrained, they might fit average data
adequately but not the individual data of the more extreme
subjects.

The presentation of the data is divided into three parts. First, it
is shown that the probabilities of subjects' high and low responses
followed, but were not the same as, the probabilities high and low
stimuli. Also, three of the subjects showed sequential effects with
the response on one trial being affected by the response on the
previous trial. Second, responses generally slowed as the number
of asterisks in the display was nearer the crossover point between
the two distributions. However, across subjects, the relationship
between correct and error reaction times varied. Third, the distri-
butions of reaction times showed the typical skewed shape and
their hazard functions rose and then either reached asymptote or
fell slightly (as is typical of other tasks; see Luce, 1986).

Response probability and sequential effects. Figure 1 shows
the probability of a low response for each subject as a function of
the number of asterisks and the previous response. The probabil-
ities fall smoothly from 0 to 96, and they cross the 50th percentile
point close to the number 47, at which the low and high distribu-
tions crossed. Thus, the subjects performed without systematic
biases.

The subjects differed in sequential effects. For Subjects 1 and 4,
a response was a little more likely to be high if the prior response
was high. In contrast, Subject 2 showed the reverse effect; when
the prior response was high, there was a greater probability that the
current response was low. None of the subjects showed any se-
quential effect that depended on the feedback given to the previous
response, and Subject 3 showed no sequential effects at all. These
individual differences (cf. Bertelson, 1961) present a challenge to
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Figure 1. Probability of a low response for the four subjects in Experi-
ment 1.

models because the mechanism that produces sequential effects
must be flexible enough to behave in opposite ways for different
subjects.

The fact that sequential effects were dependent on the prior
response and not on prior feedback is consistent with most earlier
findings with psychophysical tasks (Thomas, 1973, 1975; Treis-
man & Williams, 1984) and choice reaction time (Falmagne,
Cohen, & Dwivedi, 1975; see Luce, 1986, chap. 7), although some
studies, particularly in absolute identification (Ward & Lockhead,
1970), did find that feedback affected response probability. In the
earliest investigations of signal detection paradigms, it appeared
originally that any explanation of learning would have to take prior
feedback into account (e.g., Kac, 1962), but Thomas (1973, 1975)
showed that learning could be modeled by assuming criterion
shifts toward the presented stimulus value so that learning did not
depend directly on prior feedback. Thomas's account could also
deal with paradigms in which feedback was not presented to the
subject. Our experimental results are consistent with these early
signal detection results and with the choice reaction-time results.
Subjects knew that feedback was inconsistent and that for most
stimuli the correct response was sometimes high and sometimes
low. This, along with the large number of sessions tested per
subject, probably explains why the feedback to the last response
did not affect performance.

Response probability and mean reaction time. Because se-
quential effects in reaction time were small (on the order of 10-50
ms) relative to variability, reaction times were averaged over
previous feedback and previous response. Figure 2 shows mean
reaction time as a function of the displayed number of asterisks for

(Pavlic and Pratt, in prep)
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Figure 2. Mean reaction time (RT) for the four subjects in Experiment 1.

high and low responses. Generally, responses slowed as they
neared the crossover point.

For purposes of exposition, we defined error responses accord-
ing to the crossover point (47); low responses to numbers greater
than 47 are labeled errors, and so are high responses to numbers
less than 47. We used error as the label for these responses because
it is a convenient way of describing them. A response of this type
is not exactly an error, but neither is it the best response because
it is less likely to be correct than the alternative. (Note that this
definition does not correspond to the feedback that was given
subjects; ERROR -1 POINT feedback was determined by the
distribution from which a number was drawn, not by its position
relative to the crossover point.) We use the error terminology for
compactness of description throughout this article.

The subjects showed different patterns of error versus correct
response times. For Subjects 1 and 2, errors for extreme stimulus
numbers (e.g., numbers above 80 or below 20) were faster than
correct responses for those numbers, whereas less extreme errors
were slower than correct responses. But for Subject 4, errors were
always faster than correct responses, and for Subject 3 errors were
always slower than correct responses. This difference among sub-
jects is the challenge to modeling outlined in the introduction; no
model has yet been able to account for such variation while
explaining the commonalities among subjects. In addition, no
model has been able to account for a switch from slow errors to
fast errors as response probability changes (Subjects 1 and 2).

A compact way to combine the reaction-time data and the
response-probability data is to plot them jointly in a latency-
probability function (Audley & Pike, 1965; Vickers et al., 1971).
The reaction-time functions for high and low responses are rea-
sonably symmetric about the crossover point (47), so they can be

collapsed. So, for example, reaction times for low responses to 27
asterisks can be averaged with reaction times for the symmetrically
equivalent high responses to 67 asterisks, and the probability of a
low response to 27 asterisks can be averaged with the probability
of a high response to 67 asterisks. Then the average reaction time
can be plotted against the average response probability, as shown
in Figure 3. Thus, the latency-probability function can be seen as
a parametric plot where the parameter that varies along the plot is
stimulus difficulty.

The different patterns of error versus correct response times
show up in the degree to which the latency-probability functions
are symmetric. Errors generally correspond to those responses with
probability less than .5. A correct response with probability p
corresponds to an error response with probability 1 — p. For
example, if the probability of a correct response is .8, the corre-
sponding error probability is .2. If correct responses and their
corresponding errors had the same response times, the latency-
probability function would be a symmetric, inverted U-shaped
function with a maximum at about .5. The function for Subject 3
is asymmetric, with errors always slower than their corresponding
correct responses (see Figure 2). For Subjects 1 and 2, the func-
tions are asymmetric, with errors slower than correct responses
except that the most extreme errors are faster than correct re-
sponses. For Subject 4, the function is almost symmetrical, but
errors are a little faster than correct responses.

Besides providing a summary of data, the shape of the latency-
response probability function allows discrimination among various
traditional sequential sampling models of reaction time (Audley &
Pike, 1965; Vickers, 1979; Vickers et al., 1971). For example, a
simple random walk model predicts a symmetrical inverted

550 i 8004
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400-
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340-
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Figure 3. Latency-response probability functions for the data from Fig-
ures 1 and 2 for the four subjects in Experiment 1. The error bars
represent 2 standard deviations.
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So maybe dueling counters and 
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adaptive sampling period?



Does the process have to be cognitive at the level of an individual?
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Observed decision latency is exactly what is expected 
from a naïve 2D random walk amongst hard spheres.
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 Fig. 6. Typical time records for the behaviors of two food storer
 bees when their hive was either empty or full of honey. Note
 that the food storer bees cycled between the nectar delivery
 area and the nectar storage cells much more rapidly when the
 hive was empty of honey than when it was full

 the periphery (food storage area) of the nest, and
 on the start of foraging. The average time course
 of behaviors during a storage cycle (see Fig. 1) ran
 as follows: (1) collect nectar from 1.7 +1.4 (range
 1-7) foragers for a total of 29.0+18.8 s (range
 10-92 s), (2) groom and leave the nectar delivery
 area within 89 + 82 s (range 12-360 s) of becoming
 fully loaded, (3) crawl up and away from the deliv-
 ery area, and from time to time regurgitate nectar
 to nestmates, inspect cells for a suitable storage
 cell, deposit the nectar in a cell, pause to concen-
 trate the nectar, or perform some other task, and
 finally (4) crawl back to the nectar delivery area
 to start collecting more nectar from foragers. On
 average, food storers required 17.0+12.3 min to
 complete a storage cycle.

 A more detailed view of the behavior of food

 storer bees reveals that their behavior is strongly
 influenced by the number of empty storage cells
 in the hive. Of the 20 bees observed, 10 were
 watched over the 3-day period 27-29 May 1987,
 at which time the observation hive was essentially
 empty of honey (76% +10% of cells empty in the
 upper comb), and the other 10 bees were watched
 during the period 1-2 June 1987, when the hive
 was essentially full of honey (only 3% + 4% cells
 empty in the upper comb). Between these two ob-
 servation periods the black locust trees (Robinia
 pseudoacacia) came into bloom and the bees filled
 the observation hive with honey. Figure 6 shows
 graphically and Table 3 documents numerically the
 marked changes in several behavioral variables
 that arose between these two sets of observations.

 In general, once the hive became filled with honey,
 the rate at which food storers were able to process
 nectar slowed dramatically. The ultimate reason
 for this slowing down appears to have been an
 increased difficulty in finding cells in which to de-

 Table 3. Comparison of the behaviors of food storer bees between times when their hive was empty or was nearly full of honey
 (x+SD)

 Behavioral variable Hive empty n Hive full n Significance

 Storage cycle time (min)a 10.2+ 4.0 20 28.3+ 19.5 12 <0.003
 Time in delivery area after receiving nectar (s) 60 + 54 20 144 +106 12 <0.03
 Offers of nectar/h 26 +18 10 63 + 36 10 <0.05
 Cell inspections/h 75 +43 10 22 + 21 10 <0.03
 Probability that bee deposits nectar in cell 0.80 10 0.00 10 <0.001
 Probability that bee concentrates nectar 0.00 10 0.40 10 <0.02

 a as defined in Fig. 1
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 Social foraging in honey bees:
 how nectar foragers assess their colony's nutritional status
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 Summary. A honey bee colony operates as a tightly
 integrated unit of behavioral action. One manifes-
 tation of this in the context of foraging is a col-
 ony's ability to adjust its selectivity among nectar
 sources in relation to its nutritional status. When

 a colony's food situation is good, it exploits only
 highly profitable patches of flowers, but when its
 situation is poor, a colony's foragers will exploit
 both highly profitable and less profitable flower
 patches. The nectar foragers in a colony acquire
 information about their colony's nutritional status
 by noting the difficulty of finding food storer bees
 to receive their nectar, rather than by evaluating
 directly the variables determining their colony's
 food situation: rate of nectar intake and amount
 of empty storage comb. (The food storer bees in
 a colony are the bees that collect nectar from re-
 turning foragers and store it in the honey combs.
 They are the age group (generally 12-18 day old
 bees) that is older than the nurse bees but younger
 than the foragers. Food storers make up approxi-
 mately 20% of a colony members.) The mathemat-
 ical theory for the behavior of queues indicates
 that the waiting time experienced by nectar for-
 agers before unloading to food storers (queue
 length) is a reliable and sensitive indicator of a
 colony's nutritional status. Queue length is au-
 tomatically determined by the ratio of two rates
 which are directly related to a colony's nutritional
 condition: the rate of arrival of loaded nectar for-
 agers at the hive (arrival rate) and the rate of arriv-
 al of empty food storers at the nectar delivery area
 (service rate). These two rates are a function of
 the colony's nectar intake rate and its empty comb
 area, respectively. Although waiting time conveys
 crucial information about the colony's nutritional
 status, it has not been molded by natural selection
 to serve this purpose. Unlike "signals", which are
 evolved specifically to convey information, this

 "cue" conveys information as an automatic by-
 product. Such cues may prove more important
 than signals in colony integration.

 Introduction

 In advanced social insects - such as army ants,
 fungus-growing termites, and honey bees - in
 which the colonies consists of one queen and many
 thousands of sterile workers, natural selection is
 based mainly on differences in survival and repro-
 duction between colonies, rather than between in-
 dividuals within these colonies. This colony-level
 selection has propeled the evolution of highly elab-
 orate societies which function as tightly integrated
 units of behavioral action. For example, to collect
 its food, a colony of honey bees gathers informa-
 tion about flower patches in the surrounding coun-
 tryside, skillfully chooses among these patches to
 exploit selectively those that are most profitable,
 and swiftly shifts the foci of its foraging efforts
 in response to changes in the foraging opportuni-
 ties (Seeley 1986, 1987; Seeley and Levien 1987).
 This and other impressive forms of integrated be-
 havior at the colony level, which reflect complex
 division of labor and altruistic interactions among
 a colony's members (reviewed for the social insects
 in general by Wilson 1971, 1985; Brian 1983;
 Markl 1985) are very telling because they reveal
 that adaptive organization (sensu Williams 1966,
 1985) has evolved at the level of societies, not just
 cells and organisms. The existence of adaptively
 organized units at several levels of life prompts
 the important question: Are there principles of or-
 ganization which apply at all levels of adaptive
 organization, from cells to societies? To answer
 this question we must understand how living sys-
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An encounter is likely
shortly after entrance

An encounter is likely
long after entrance

RecruitDo not recruit

An encounter is likely
shortly before exit

An encounter is likely
long before exit
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Specious Reward: A Behavioral Theory of Impulsiveness
and Impulse Control

George Ainslie
Massachusetts Mental Health Center, Boston

In a choice among assured, familiar outcomes of behavior, impulsiveness is the
choice of less rewarding over more rewarding alternatives. Discussions of
impulsiveness in the literature of economics, sociology, social psychology,
dynamic psychology and psychiatry, behavioral psychology, and "behavior
therapy" are reviewed. 'Impulsiveness seems to be best accounted for by the
hyberbolic curves that have been found to describe the decline in effectiveness
of rewards as the rewards are delayed from the time of choice. Such curves
predict a reliable change of choice between some alternative rewards as a
function of time. This change of choice provides a rationale for the known
kinds of impulse control and relates them to several hitherto perplexing phe-
nomena: behavioral rigidity, time-out from positive reinforcement, willpower,
self-reward, compulsive traits, projection, boredom, and the capacity of punish-
ing stimuli to attract attention.

This article takes up the question of why
organisms, particularly human beings, often
freely choose the poorer, smaller, or more
disastrous of two alternative rewards even
when they seem to be entirely familiar with
the alternatives. I call this kind of choice
impulsive, although the word has also been
used for behavior that is simply unpremedi-
tated. The question of impulsiveness is one
of the oldest on record—it is, after all, the
subject of the story of Adam and Eve. It
recurs in Homer in the story of Ulysses and

This article was prepared in conjunction with
research supported by National Institute of Mental
Health Grant MA-15494-04 to Harvard University.
The expenses of getting it ready for publication
were met by Milton Fund Grant 60-220-2119-2 from
Harvard Medical School.

I would like to thank Elmer J. Schaefer for
making me aware of the economic literature relevant
to this article. He, Bernard T. Engel, and William
R. Whipple made helpful comments on the manu-
script, but responsibility for the assertions made
here remains my own.

Requests for reprints should be sent to George
Ainslie, Department of Psychology, Harvard Uni-
versity, 33 Kirkland Street, Cambridge, Massachu-
setts 02138.

the Sirens. Millenia of philosophical ponder-
ing and decades of scientific observation have
left us with three rather poorly defined
guesses about why people are so prone to this
maladaptive behavior:

1. In seeming to obey impulses, people do
not knowingly choose the poorer alternative
but have not really learned the consequences
of their behavior. Socrates said something
like this. Those who hold this kind of theory
prescribe education or "insight" as the cure
for impulsiveness.

2. In obeying impulses, people know the
consequences of their behavior but are im-
pelled by some lower principle (the devil,
repetition compulsion, classical conditioning)
to act without regard for differential reward.
Those who hold this kind of theory prescribe
some means of exorcising the lower principle,
such as abreaction or desensitization.

3. In obeying impulses, people know the
consequences of their behavior, but their
valuation of the consequences is innately dis-
torted so that imminent consequences have
a greater weight than remote ones. Those
who hold this kind of theory prescribe devices

463

Temporal discounting

The perceived value of a reward/stimulus decreases 
with time since the event
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http://bit.ly/bda2018quorum
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Medium Stimulus (Medium Discount Rate)
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Strong Stimulus (Low Discount Rate)
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Quorum sensing by temporal discounting 7

Figure 3. Hypothetical discounted value of an encounter stimulus. If the ant finds
the exit at time a, the stimulus has not been fully discounted and the ant chooses to
do a transport. If the ant finds the exit at time b, the stimulus has been discounted
completely to zero, and the ant leaves and chooses to do a tandem run.

behavior. Alternatively, if the ant finds the entrance at time b after the per-
ceived value has completely decayed to nothing, the ant will choose to engage in
a Tandem Run.

4.1 Robotic Implementation of TD-QS

All that is required to implement temporally discounted quorum sensing (TD-
QS) on a single robot is the ability to:

– Detect an encounter with another robot.
– Detect an encounter with a privileged region of space (e.g., an entrance).
– Switch to an internal “rewarded” state for a specified finite amount of time.

The first two requirements are commonly taken for granted in multi-robot sys-
tems. The third requirement is less stringent than requiring that a robot be able
to count up to an arbitrary number of encounters. Furthermore, a pulse of fixed
and known delay can be generated by any simple analog monostable multivi-
brator electronic circuit. In fact, some bio-chemical pathways implementable in
bio-nano robots could also generate such a pulse.

A multi-robot system implementing TD-QS can be described by the small set
of event-triggered rules summarized by the chemical reaction network (CRN):

S + S
ea�* 2R (1a)

S +R
ea�* 2R (1b)

S + E
ee�* XTR + E (1c)8 Theodore P. Pavlic et al.

R+ E
ee�* XT + E (1d)

R
1/⌧��* S (1e)

In the CRN, a robot enters the confined space in the sedate S state. In Equa-
tions (1a)–(1b), a sedate robot may encounter another sedate robot or a rewarded
R robot. The mass-action constant ea is a function of the size of the robots, their
speed, and the confined space. E↵ectively, 1/ea represents the average time any
specific pair of robots will wait until encountering each other in the space. Both
sedate–sedate and sedate–rewarded encounters result in both robots being in the
rewarded state after the encounter. As described in Equations (1c)–(1d), both
sedate and rewarded robots can encounter the entrance E with a mass-action
constant of ee. A sedate (or rewarded) robot that encounters the entrance tran-
sitions to the absorbing state XTR (or XT ) that is analogous to a Tandem Run
(or Transport) decision in Temnothorax ants. Finally, Equation (1e) represents
the spontaneous decay from the rewarded state to the sedate state, which occurs
after a delay of ⌧ time units.

4.2 Qualitative Analysis of TD-QS

The CRN in Equation (1) is alternatively a description of a continuous-time
Markov chain with two absorbing states, XTR and XT . Because sedate robots
and rewarded robots are equally likely to encounter the entrance, the residence
time in the cavity is e↵ectively a process that randomly samples from the re-
maining population of rewarded (R) and sedate (S) robots, sending sampled
R robots to the XT state and sampled S robots to the XTR state. Thus, the
balance between XT robots and XTR robots reflects a tension between the total
number of robots, the mass-action rate ea (i.e., robot speed and geometry), and
the delay ⌧ until a rewarded robot decays to a sedate robot. There will be a large
number of robots in the rewarded state for either a large number of robots in
the confined space or a large delay. In the former case, a large number of robots
will lead to frequent encounters and thus frequent transitions into the rewarded
state. In the latter case, even if a robot encounters another infrequently, it will
spend most of the time between encounters in the delay period. Thus, for a fixed
delay time, we expect the decision forced by re-encountering the nest entrance
to be monotonically related to the encounter rate (and thus the number of ants).

5 Multi-Agent Simulation Results of TD-QS

To test whether temporally discounted encounter rewards could generate quo-
rum-sensing outcomes similar to the data from Pratt [14], we implemented the
CRN in Equation (1) in NetLogo [21] for a single square-shaped nest with a wide
range of initial nest populations6. We gave all ants a finite, non-zero radius and

6 See http://www.public.asu.edu/⇠tpavlic/netlogo/dars2018/temporal discounting
ants.html for a web-enabled version of the simulation tool.
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For take away…
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• The ants are an interacting ensemble
• The cavity’s physical space is a sampler
• The computational model should be at 

the level of the ant–cavity system

• More broadly: Physical spaces provide 
memory and even computational 
primitives for free
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“Any questions?”

@TedPavlic
tpavlic@asu.edu

Web version of simulator:
http://bit.ly/bda2018quorum
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