Knowledge and Action in DA and BDA

Yoram Moses

Technion

Many Models of Distributed Computing

DC research is typically performed in a given model.

Many models of interest:

- Synchronous: LOCAL, CONGEST, Congested CLIQUE, ...
- Asynchronous: message-passing, shared memory, Iterated Snapshot. . .
- Partial synchrony
- Faults: none, crash, omission, Byzantine,...
- Population protocols, Finite-state models, Amoebot, Stone-Age, ...
- Multitude of possible models for biological systems

Can we formally capture common themes?

Many Models of Distributed Computing

DC research is typically performed in a given model.

Many models of interest:

- Synchronous: LOCAL, CONGEST, Congested CLIQUE, ...
- Asynchronous: message-passing, shared memory, Iterated Snapshot...
- Partial synchrony
- Faults: none, crash, omission, Byzantine,...
- Population protocols, Finite-state models, Amoebot, Stone-Age, ...
- Multitude of possible models for biological systems

Can we formally capture common themes?

Many Models of Distributed Computing

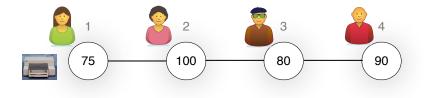
DC research is typically performed in a given model.

Many models of interest:

- Synchronous: LOCAL, CONGEST, Congested CLIQUE, ...
- Asynchronous: message-passing, shared memory, Iterated Snapshot...
- Partial synchrony
- Faults: none, crash, omission, Byzantine,...
- Population protocols, Finite-state models, Amoebot, Stone-Age, ...
- Multitude of possible models for biological systems

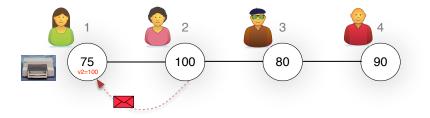
Can we formally capture common themes?

Computing the Maximum (CTM)



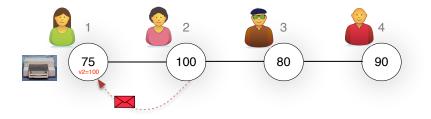
- Each node *i* has an initial value *v_i*
- Agent 1 must print the maximal value
- After receiving "v₂ = 100" Agent 1 has the maximum.
 Can she act?

Computing the Maximum (CTM)

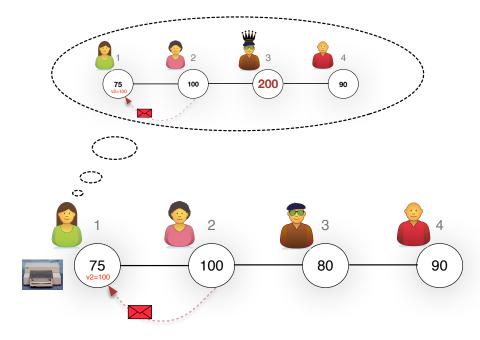


- Each node *i* has an initial value *v_i*
- Agent 1 must print the maximal value
- After receiving "v₂ = 100" Agent 1 has the maximum.
 Can she act?

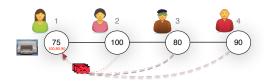
Computing the Maximum (CTM)



- Each node *i* has an initial value v_i
- Agent 1 must print the maximal value
- After receiving " $v_2 = 100$ " Agent 1 has the maximum. Can she act?



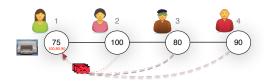
Collecting Values



Even collecting all values is not sufficient

if more participants are possible

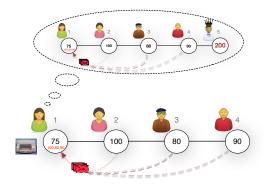
Collecting Values



Even collecting all values is not sufficient...

if more participants are possible

Collecting Values



Even collecting all values is not sufficient...

if more participants are possible

What is ${\rm CTM}$ about?

Not collecting values!

Printing c is forbidden if some indistinguishable point satisfies $Max \neq c$.

What is CTM about?

Not collecting values!

Indistinguishability and Knowledge

Printing *c* is forbidden if some indistinguishable point satisfies $Max \neq c$.

What is CTM about?

Not collecting values!

Indistinguishability and Knowledge

Printing c is forbidden if some indistinguishable point satisfies $Max \neq c$.

BDA 2018 RHUL (:-)

A Theory of Knowledge in Distributed Systems

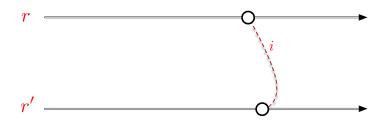
A three decades old theory of knowledge is based on

- Halpern and M. [1984]
- Parikh and Ramanujam [1985]
- Chandy and Misra [1986]

- Fagin et al. [1995], Reasoning about Knowledge
- and earlier Kripke 1950's, Hintikka [1962], Aumann [1976]

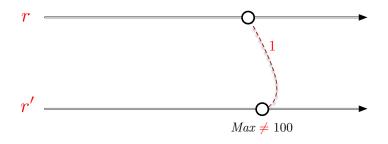
Basic notion: Indistinguishability

Basic notion: Indistinguishability



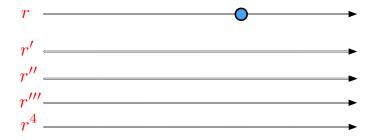
i has the same state at both points

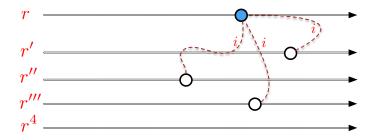
Basic notion: Indistinguishability

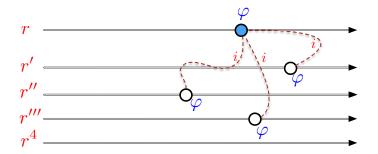


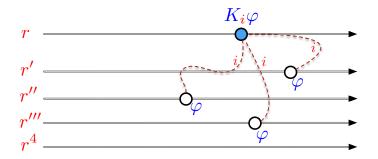
r r' $Max \neq 100$

Basic notion: Indistinguishability









- A run is a sequence $r : \mathbb{N} \to \mathcal{G}$ of global states.
- A system is a set *R* of runs.

Assumption

Each global state r(t) determines a *local state* $r_i(t)$ for every agent *i*.

A point (r, t) refers to time t in run r.

Facts are "true" or "false" at a point.

 $(\mathbf{R}, \mathbf{r}, \mathbf{t}) \models \varphi$ denotes that φ is true at (\mathbf{r}, \mathbf{t}) wrt \mathbf{R} .

- A run is a sequence $r : \mathbb{N} \to \mathcal{G}$ of global states.
- A system is a set *R* of runs.

Assumption

Each global state r(t) determines a *local state* $r_i(t)$ for every agent *i*.

A point (r, t) refers to time t in run r.

Facts are "true" or "false" at a point.

 $(\mathbf{R}, \mathbf{r}, \mathbf{t}) \vDash \varphi$ denotes that φ is true at (\mathbf{r}, \mathbf{t}) wrt \mathbf{R} .

- A run is a sequence $r : \mathbb{N} \to \mathcal{G}$ of global states.
- A system is a set *R* of runs.
 - *R* is the set of all runs of a protocol in a given model.

Assumption

Each global state r(t) determines a *local state* $r_i(t)$ for every agent *i*

A point (r, t) refers to time t in run r

Facts are "true" or "false" at a point

 $(\mathbf{R}, \mathbf{r}, \mathbf{t}) \vDash \varphi$ denotes that φ is true at (r, t) wrt R

- A run is a sequence $r : \mathbb{N} \to \mathcal{G}$ of global states.
- A system is a set *R* of runs.
 - *R* is the set of all runs of a protocol in a given model.

Assumption

Each global state r(t) determines a *local state* $r_i(t)$ for every agent *i*

A point (r, t) refers to time t in run r

Facts are "true" or "false" at a point

 $(\mathbf{R}, \mathbf{r}, \mathbf{t}) \vDash \varphi$ denotes that φ is true at (\mathbf{r}, \mathbf{t}) wrt \mathbf{R}

Knowledge = Truth in All Possible Worlds

 $(R, r, t) \models K_i \varphi$ iff $(R, r', t') \models \varphi$ for all points (r', t') of Rsuch that $r_i(t) = r'_i(t')$.

Comments:

The definition ignores the complexity of computing knowledge

Local information = current local state

The definition is model independent, and so especially interesting for BDA

Knowledge = Truth in All Possible Worlds

 $(R, r, t) \models K_i \varphi$ iff $(R, r', t') \models \varphi$ for all points (r', t') of Rsuch that $r_i(t) = r'_i(t')$.

Comments:

The definition ignores the complexity of computing knowledge

Local information = current local state

The definition is model independent, and so especially interesting for BDA

Knowledge = Truth in All Possible Worlds

 $(R, r, t) \models K_i \varphi$ iff $(R, r', t') \models \varphi$ for all points (r', t') of Rsuch that $r_i(t) = r'_i(t')$.

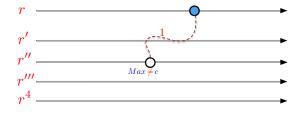
Comments:

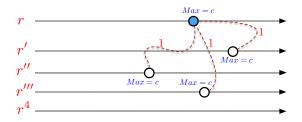
The definition ignores the complexity of computing knowledge

Local information = current local state

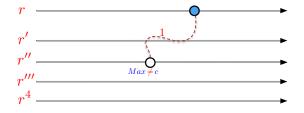
The definition is model independent, and so especially interesting for BDA

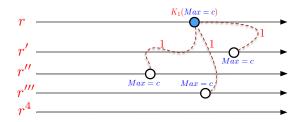
Knowledge is the **Dual** of Indistinguishability





Knowledge is the **Dual** of Indistinguishability





• Knowing that Max = c is necessary and sufficient for printing c

 $\bullet\,$ This is the single unifying property of all solutions to ${\rm CTM}$

- Knowing that Max = c is necessary and sufficient for printing c
- $\bullet\,$ This is the single unifying property of all solutions to ${\rm CTM}$

Knowledge in $\mathrm{C}\mathrm{T}\mathrm{M}$

Knowing that Max = c can depend on:

- Messages received
- The protocol
- The possible initial values
- Network topology
- Timing guarantees re: communication, synchrony, activation
- Possibility of failures, ...

Problem Specifications and Necessary Conditions

Cash from the ATM:

$Dispense($100) \implies good credit$

Agreement Protocols:

$Decide_i(v) \Rightarrow nobody decides v' \neq v$

Autonomous Cars:

Enter_intersection ⇒ no cross-traffic

Computing the Max:

 $print(c) \Rightarrow Max = c$

and we have seen

print(c) \Rightarrow $K_1(Max = c)$

Computing the Max:

 $print(c) \Rightarrow Max = c$

and we have seen

print(c) \Rightarrow $K_1(Max = c)$

Computing the Max:

$$print(c) \Rightarrow Max = c$$

and we have seen

$print(c) \Rightarrow K_1(Max = c)$

The Knowledge of Preconditions Principle (KoP)

If performing $\alpha \Rightarrow \varphi$ Then *i* performs $\alpha \Rightarrow K_i \varphi$

An essential connection between knowledge and action

The Knowledge of Preconditions Principle (KoP)

If performing $\alpha \Rightarrow \varphi$ Then *i* performs $\alpha \Rightarrow K_i \varphi$

An essential connection between knowledge and action

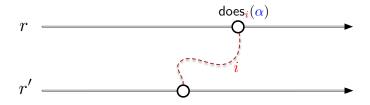
The Knowledge of Preconditions Principle (KoP)

If performing $\alpha \Rightarrow \varphi$ Then *i* performs $\alpha \Rightarrow K_i \varphi$

An essential connection between knowledge and action

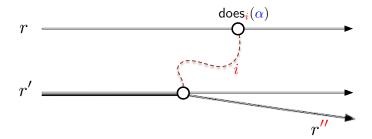
Definition

Action α is state-enabled in R when for all points (r, t) and (r', t') of R, if $r_i(t) = r'_i(t') \& (R, r, t) \models \text{does}_i(\alpha)$ then there is a run r'' that agrees with r' up to time t' such that $(R, r'', t') \models \text{does}_i(\alpha)$.



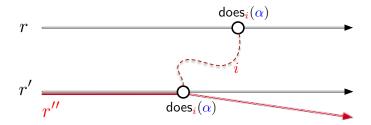
Definition

Action α is state-enabled in R when for all points (r, t) and (r', t') of R, if $r_i(t) = r'_i(t')$ & $(R, r, t) \models \text{does}_i(\alpha)$ then there is a run r'' that agrees with r' up to time t' such that $(R, r'', t') \models \text{does}_i(\alpha)$.



Definition

Action α is state-enabled in R when for all points (r, t) and (r', t') of R, if $r_i(t) = r'_i(t') \& (R, r, t) \models \text{does}_i(\alpha)$ then there is a run r'' that agrees with r' up to time t' such that $(R, r'', t') \models \text{does}_i(\alpha)$.



Definition

Action α is state-enabled in R when for all points (r, t) and (r', t') of R, if $r_i(t) = r'_i(t') \& (R, r, t) \models \text{does}_i(\alpha)$ then there is a run r'' that agrees with r' up to time t' such that $(R, r'', t') \models \text{does}_i(\alpha)$.

The KoP Theorem

 $(R, r, t) \vDash \operatorname{does}_i(\alpha)$ iff *i* performs α at time *t* in *r*.

Theorem (KoP)Assume that α is a state-enabled action in R.If φ is a necessary condition for $does_i(\alpha)$ in R,then $K_i \varphi$ is a necessary condition for $does_i(\alpha)$ in R.

Actions by ATM's, Autonomous cars, Consensus, require knowing their preconditions.

The KoP Theorem

 $(R, r, t) \vDash \operatorname{does}_i(\alpha)$ iff *i* performs α at time *t* in *r*.

Theorem (KoP)Assume that α is a state-enabled action in R.If φ is a necessary condition for $does_i(\alpha)$ in R,then $K_i \varphi$ is a necessary condition for $does_i(\alpha)$ in R.

Actions by ATM's, Autonomous cars, Consensus, require knowing their preconditions.

The KoP is a universal theorem for distributed systems

KoP applies even more generally:

- Legal systems:
 - Judge Punishes X ⇒ X committed the crime Judge Punishes X ⇒ KJ(X committed the crime)
- Betting:
 - Don bets on Phar Lap \Rightarrow PL will win Don bets on Phar Lap \Rightarrow $K_D(PL will win)$

The **K**o**P** is a universal theorem for distributed systems **K**o**P** applies even more generally:

Legal systems:

Judge Punishes $X \Rightarrow X$ committed the crime Judge Punishes $X \Rightarrow K_1(X \text{ committed the crime})$

Betting:

Don bets on Phar Lap \Rightarrow PL will win Don bets on Phar Lap \Rightarrow $K_D(PL will win)$

The KoP is a universal theorem for distributed systems

K*o***P** applies even more generally:

- Legal systems:
 - Judge Punishes $X \implies X$ committed the crime Judge Punishes $X \implies K_J(X \text{ committed the crime})$

Betting:

Don bets on Phar Lap \Rightarrow PL will win Don bets on Phar Lap \Rightarrow $K_D(PL will win)$

The **K**o**P** is a universal theorem for distributed systems **K**o**P** applies even more generally:

Legal systems:

Judge Punishes $X \Rightarrow X$ committed the crime Judge Punishes $X \Rightarrow K_J(X \text{ committed the crime})$

Betting:

Don bets on Phar Lap \Rightarrow PL will win Don bets on Phar Lap \Rightarrow $K_D(PL will win)$

KoP in Biological Systems

A jellyfish behaves in a manner satisfying:

Jellyfish stings $X \implies X \neq a \operatorname{rock}$ Jellyfish stings $X \implies K_J(X \neq a \operatorname{rock})$

Natural organisms "implement protocols", and their bahavior "satisfies specification"

This imposes constraints on the information that they must use

KoP in Biological Systems

A jellyfish behaves in a manner satisfying:

Jellyfish stings $X \implies X \neq a \operatorname{rock}$ Jellyfish stings $X \implies K_I(X \neq a \operatorname{rock})$

Natural organisms "implement protocols", and their bahavior "satisfies specification"

This imposes constraints on the information that they must use

KoP in Biological Systems

A jellyfish behaves in a manner satisfying:

Jellyfish stings $X \implies X \neq a \operatorname{rock}$ Jellyfish stings $X \implies K_I(X \neq a \operatorname{rock})$

Natural organisms "implement protocols", and their bahavior "satisfies specification"

This imposes constraints on the information that they must use

Ordering Actions

Definition (Ordered Actions) Actions $\langle \alpha_1, ..., \alpha_k \rangle$ (for agents 1, ..., k) are ordered in R if $\operatorname{does}_j(\alpha_j) \implies \operatorname{Did}_{j-1}(\alpha_{j-1})$ in R

 $t_{j-1} \leq t_j$ if each action α_i occurs at time t_i

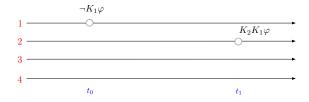
Nested Knowledge and Ordered Actions

Theorem (Nested Knowledge of Preconditions) Let $(\alpha_1, ..., \alpha_k)$ be ordered in R. If $does_1(\alpha_1) \Rightarrow occ'd(e)$ in Rthen $does_j(\alpha_j) \Rightarrow K_j K_{j-1} \cdots K_1 occ'd(e)$ in R

Theorem (Chandy & Misra 1986)

Let R be asynchronous and $t_1 > t_0$.

If $(R, r, t_0) \vDash \neg K_1 \varphi$ and $(R, r, t_1) \vDash K_2 K_1 \varphi$



Theorem (Chandy & Misra 1986)

Let R be asynchronous and $t_1 > t_0$.

If
$$(R, r, t_0) \models \neg K_1 \varphi$$
 and
 $(R, r, t_1) \models K_2 K_1 \varphi$

then there must be a (Lamport) message chain in r from process 1 to process 2 between times t_0 and t_1 .

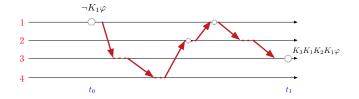


Theorem (Chandy & Misra 1986)

Let R be asynchronous and $t_1 > t_0$.

If $(R, r, t_0) \vDash \neg K_1 \varphi$ and $(R, r, t_1) \vDash K_m K_{m-1} \cdots K_1 \varphi$

then there must be a (Lamport) message chain in r from process 1 through process 2, 3, ..., m between times t_0 and t_1 .



Theorem (Chandy & Misra 1986)

Let R be asynchronous and $t_1 > t_0$.

If $(R, r, t_0) \vDash \neg K_1 \varphi$ and $(R, r, t_1) \vDash K_m K_{m-1} \cdots K_1 \varphi$

then there must be a (Lamport) message chain in r from process 1 through process 2, 3, ..., m between times t_0 and t_1 .

Corollary

The only way to coordinate ordered actions under asynchrony is by constructing message chains.

Definition

Actions α_1 and α_2 are (necessarily) simultaneous in *R* if both

- $\operatorname{does}_2(\alpha_2)$ is a necessary condition for $\operatorname{does}_1(\alpha_1)$ and
- $does_1(\alpha_1)$ is a necessary condition for $does_2(\alpha_2)$.

Corollaries

Let α_1 and α_2 be simultaneous in R. Then

 $K_1 \text{does}_2(\alpha_2)$ is a nec. condition for $\text{does}_1(\alpha_1)$ $K_1 \text{does}_2(\alpha_2)$ is a nec. condition for $\text{does}_2(\alpha_2)$, so $K_2 K_1 \text{does}_2(\alpha_2)$ is a nec. condition for $\text{does}_2(\alpha_2)$, $K_2 K_1 \text{does}_2(\alpha_2)$ is a nec. condition for $\text{does}_1(\alpha_1)$, so $K_1 K_2 K_1 \text{does}_2(\alpha_2)$ is a nec. condition for $\text{does}_1(\alpha_1)$, $K_2 K_1 K_2 K_1 \text{does}_2(\ldots)$

Definition

Actions α_1 and α_2 are (necessarily) simultaneous in *R* if both

- $does_2(\alpha_2)$ is a necessary condition for $does_1(\alpha_1)$ and
- $does_1(\alpha_1)$ is a necessary condition for $does_2(\alpha_2)$.

Corollaries

Definition

Actions α_1 and α_2 are (necessarily) simultaneous in R if both

- $does_2(\alpha_2)$ is a necessary condition for $does_1(\alpha_1)$ and
- $does_1(\alpha_1)$ is a necessary condition for $does_2(\alpha_2)$.

Corollaries

Definition

Actions α_1 and α_2 are (necessarily) simultaneous in *R* if both

- $\operatorname{does}_2(\alpha_2)$ is a necessary condition for $\operatorname{does}_1(\alpha_1)$ and
- $does_1(\alpha_1)$ is a necessary condition for $does_2(\alpha_2)$.

Corollaries

Definition

Actions α_1 and α_2 are (necessarily) simultaneous in *R* if both

- $\operatorname{does}_2(\alpha_2)$ is a necessary condition for $\operatorname{does}_1(\alpha_1)$ and
- $does_1(\alpha_1)$ is a necessary condition for $does_2(\alpha_2)$.

Corollaries

Definition

Actions α_1 and α_2 are (necessarily) simultaneous in *R* if both

- $\operatorname{does}_2(\alpha_2)$ is a necessary condition for $\operatorname{does}_1(\alpha_1)$ and
- $does_1(\alpha_1)$ is a necessary condition for $does_2(\alpha_2)$.

Corollaries

Definition

Actions α_1 and α_2 are (necessarily) simultaneous in *R* if both

- $\operatorname{does}_2(\alpha_2)$ is a necessary condition for $\operatorname{does}_1(\alpha_1)$ and
- $does_1(\alpha_1)$ is a necessary condition for $does_2(\alpha_2)$.

Corollaries

Simultaneity Requires Common Knowledge

Theorem (Common Knowledge of Preconditions) Suppose that $A = \{\alpha_i\}_{i \in G}$ are simultaneous actions in R. If φ is a necessary condition for $\text{does}_i(\alpha_i)$ for some $i \in G$, then $C_G \varphi$ is a necessary condition for $\text{does}_i(\alpha_i)$, for all $j \in G$.

cf. [Halpern and M. '90]

Knowledge and Coordination

Individual Action \Leftrightarrow Knowledge of Preconditions (**KoP**)

Ordered Action \Leftrightarrow Nested Knowledge of Preconditions

Simultaneous Action 👄 Common Knowledge of Preconditions

There is a close connection between knowledge and coordination

KoP formally relates knowledge and action, applies universally

It allows fairly model-independent analysis

Diverse applications including standard distributed algorithms, VLSI, real-time coordination

Can provide insights into the analysis of biological distributed systems

Open: Stochastic variants of KoP and their applications

Much is left to be explored

There is a close connection between knowledge and coordination

KoP formally relates knowledge and action, applies universally

It allows fairly model-independent analysis

Diverse applications including standard distributed algorithms, VLSI, real-time coordination

Can provide insights into the analysis of biological distributed systems

Open: Stochastic variants of KoP and their applications

Much is left to be explored

There is a close connection between knowledge and coordination

KoP formally relates knowledge and action, applies universally

It allows fairly model-independent analysis

Diverse applications including standard distributed algorithms, VLSI, real-time coordination

Can provide insights into the analysis of biological distributed systems

Open: Stochastic variants of KoP and their applications

Much is left to be explored

There is a close connection between knowledge and coordination

KoP formally relates knowledge and action, applies universally

It allows fairly model-independent analysis

Diverse applications including standard distributed algorithms, VLSI, real-time coordination

Can provide insights into the analysis of biological distributed systems

Open: Stochastic variants of KoP and their applications

Much is left to be explored

There is a close connection between knowledge and coordination

KoP formally relates knowledge and action, applies universally

It allows fairly model-independent analysis

Diverse applications including standard distributed algorithms, VLSI, real-time coordination

Can provide insights into the analysis of biological distributed systems

Open: Stochastic variants of KoP and their applications

Much is left to be explored

There is a close connection between knowledge and coordination

KoP formally relates knowledge and action, applies universally

It allows fairly model-independent analysis

Diverse applications including standard distributed algorithms, VLSI, real-time coordination

Can provide insights into the analysis of biological distributed systems

Open: Stochastic variants of KoP and their applications

Much is left to be explored

There is a close connection between knowledge and coordination

KoP formally relates knowledge and action, applies universally

It allows fairly model-independent analysis

Diverse applications including standard distributed algorithms, VLSI, real-time coordination

Can provide insights into the analysis of biological distributed systems

Open: Stochastic variants of KoP and their applications

Much is left to be explored

There is a close connection between knowledge and coordination

KoP formally relates knowledge and action, applies universally

It allows fairly model-independent analysis

Diverse applications including standard distributed algorithms, VLSI, real-time coordination

Can provide insights into the analysis of biological distributed systems

Open: Stochastic variants of KoP and their applications

Much is left to be explored

There is a close connection between knowledge and coordination

KoP formally relates knowledge and action, applies universally

It allows fairly model-independent analysis

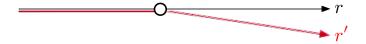
Diverse applications including standard distributed algorithms, VLSI, real-time coordination

Can provide insights into the analysis of biological distributed systems

Open: Stochastic variants of KoP and their applications

Much is left to be explored

Past-dependent Formulas

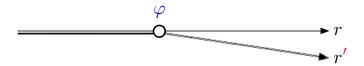


Definition

 φ is past-dependent in R if for all r, r' that agree up to time t:

$$(R,r,t) \vDash \varphi$$
 iff $(R,r',t) \vDash \varphi$

Past-dependent Formulas

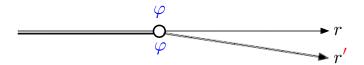


Definition

 φ is past-dependent in R if for all r, r' that agree up to time t:

$$(R,r,t) \vDash \varphi$$
 iff $(R,r',t) \vDash \varphi$

Past-dependent Formulas



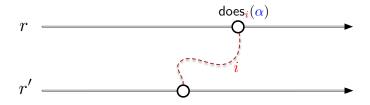
Definition

 φ is past-dependent in R if for all r, r' that agree up to time t:

$$(R,r,t) \vDash \varphi$$
 iff $(R,r',t) \vDash \varphi$

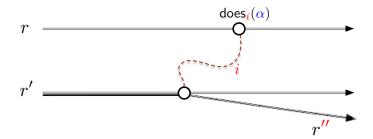
Definition

Action α is state-enabled in R when for all points (r, t) and (r', t') of R, if $r_i(t) = r'_i(t') \& (R, r, t) \models \text{does}_i(\alpha)$ then there is a run r'' that agrees with r' up to time t' such that $(R, r'', t') \models \text{does}_i(\alpha)$.



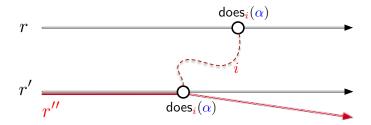
Definition

Action α is state-enabled in R when for all points (r, t) and (r', t') of R, if $r_i(t) = r'_i(t')$ & $(R, r, t) \models \text{does}_i(\alpha)$ then there is a run r'' that agrees with r' up to time t' such that $(R, r'', t') \models \text{does}_i(\alpha)$.



Definition

Action α is state-enabled in R when for all points (r, t) and (r', t') of R, if $r_i(t) = r'_i(t') \& (R, r, t) \models \text{does}_i(\alpha)$ then there is a run r'' that agrees with r' up to time t' such that $(R, r'', t') \models \text{does}_i(\alpha)$.



Definition

Action α is state-enabled in R when for all points (r, t) and (r', t') of R, if $r_i(t) = r'_i(t') \& (R, r, t) \models \text{does}_i(\alpha)$ then there is a run r'' that agrees with r' up to time t' such that $(R, r'', t') \models \text{does}_i(\alpha)$.

The KoP Theorem for Nondeterministic Actions

Theorem (Nondeterministic KoP)

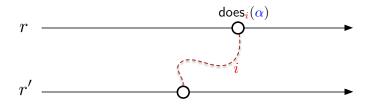
Let α be state-enabled and φ be past-dependent in R.

lf 4	o is a	necessary	condition	for	does <mark>;</mark> ((<u>α</u>)	in R,
------	--------	-----------	-----------	-----	-----------------------	--------------	-------

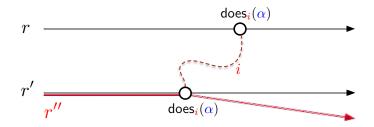
then $K_i \varphi$ is a necessary condition for $does_i(\alpha)$ in R.

$$(R, r, t) \vDash \texttt{does}_i(\alpha)$$

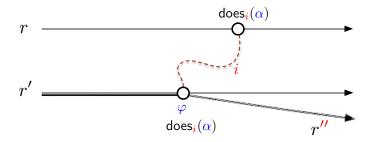
BDA 2018 RHUL (:-)



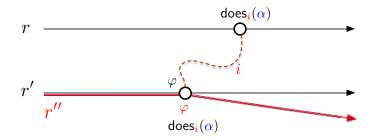
 $(r,t) \approx_i (r',t')$



α is state-enabled



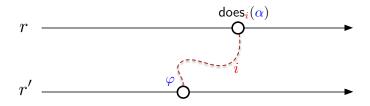
 φ is a necessary condition



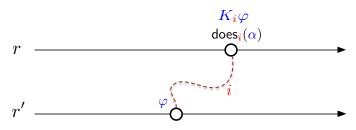
φ is past-dependent

BDA 2018 RHUL (:-)

July 23, 2018 36 / 36



φ holds at all indistinguishable points.



φ holds at all indistinguishable points.

$$does_i(\alpha) \Rightarrow K_i \varphi$$
 QED