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(a) Foraging (b) Brood care

(c) Farming aphids (d) Cultivating fungi
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Task Allocation
We care about task allocation, i.e., assignment of ants to
tasks
Queen has no real power
Decision must be made in distributed fashion
From time to time the assignment needs to be adapted:

Say that there are currently 1000 foragers and an
anteater eats half of them

Who replaces them?
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Model: Cornejo et al. 2014
Each task j has a demand demand(j)

Ants act in synchronous rounds
Number of ants working on task in round t: load

(t)
j

Ants receive binary feedback for each task:

F
(t)
j =

{
overload if load

(t−1)
j > demand(j)

lack otherwise

Based on feedback ants can choose to join a task or leave a
task
Synchronicity models the delay of information and
movement
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Binary Feedback—Cornejo et al. 2014

1/2

1/2

Legend:

Working state

None-working state

A simple state-machine does the job.
Transitions based on feedback: overload/lack
Thm: For every t = Ω(log n) rounds
| load

(t)
j − demand(j) | ≤ 1 (i.e., optimal load ±1)
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Is this feedback realistic? —Cornejo et al. 2014

overload(j)0

Prob. of receiving feedback overload

1

all ants
receive feedback

lack
receive feedback

surplus

all ants

0

(= demand(j) − load(j))
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Noisy feedback! — Our model

overload(j)γ∗demand(j)−γ∗demand(j) 0

grey zone
Prob. of receiving feedback overload

1
2

1
n6

w.h.p all ants
receive feedback

lack

w.h.p all ants
receive feedback

surplus

(= demand(j) − load(j))

critical value γ∗ demand(j)

sigmoid could be replaced by any function that
monotonic increasing
bounded away from 1
uncertainty maximized at 0
exponential decay
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How can we use this feedback?

overload(j)

regret

γ∗demand(j)−γ∗demand(j) 0

grey zone
Prob. of receiving feedback overload

1
2

1
n6

w.h.p all ants
receive feedback

lack

w.h.p all ants
receive feedback

surplus

critical value

(= demand(j) − load(j))

As long we are in the green or red area all ants have the
correct feedback
If we are in the red area, then some ants should leave
If we are in the green area, then some ants should join
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Challenge 1: Synchronicity

All ants decide at the same time
If ants simply leave when a task if overloaded and join if
it’s underloaded, then we get oscillations

time t
0 1 2 3 4 5

loadt

demand
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Challenge 2: What to do in the grey zone?

Say demand = 6 and load = 6 ants currently working on
the task.
Then half of the idle ants receive feedback lack
What should each ant do?
Those ants can distinguish from the case where 0 ants work

idle antsScouting

lack lack lack

lack lack

lacklack

(6/6 working)
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Tasks performed by ants
If in red area, slowly decrease!
Avoid grey area!
If in green, join if idle

time t
0 1 2 3 4 5

loadt
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The algorithm

Intuition:
Making a decision based only on the current load (sample)
is tricky
We need probabilistic choices
Reduce the load carefully
Avoid the grey zone ...
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Assumptions

overload(j)

regret

γ∗demand(j)−γ∗demand(j) 0

grey zone
Prob. of receiving feedback overload

1
2

1
n6

w.h.p all ants
receive feedback

lack

w.h.p all ants
receive feedback

surplus

critical value

(= demand(j) − load(j))

We assume the ants have a rough upper bound γ with
γ∗ ≤ γ.
All ants are in the same cycle consisting of 2 rounds,
e.g., day and night
Not all ants are required to work (slack)∑

j demand(j) ≤ 0.9n
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The algorithm
Combine round 2i and 2i+ 1 into phase i
Always take two samples:
Sample 1 at load

(t)
j

Sample 2 at (1− 3γ∗) · load
(t)
j (each ant flips a coin)

If both samples indicate overload, then leave with small
probability

time t
0 1 2 3 4 5

loadt

sample 1

sample 2
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The algorithm
Always take two samples—combine two rounds into one
phase
Sample 1 at load

(t)
j

Sample 2 at (1− 3γ∗) · load
(t)
j

If both samples indicate overload, then leave with small
probability

time t
0 1 2 3 4 5

loadt sample 1

sample 2
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The algorithm
Always take two samples:

Sample 1 at load
(t)
j

Sample 2 at (1− 3γ∗) · load
(t)
j

If both samples indicate overload, then leave with small
probability

time t
0 1 2 3 4 5

loadt sample 1

sample 2
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Performance Metric

Regret r(t), defined for time t ∈ R as:

r(t) =
∑
j∈[k]

| demand(j)− load
(j)
t | =

∑
j∈[k]

| deficit
(j)
t |.

Furthermore, we define the (total) regret up to time t as:

R(t) =
∑
i≤t

r(i).

Penalize under- and overload equally
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Main Result

Theorem
Consider an arbitrary initial allocation at time 0. Fix an
arbitrary t ∈ N. Algorithm Ant with learning rate γ ≥ γ∗ has
w.h.p. a total regret during the first t rounds that is bounded by

R(t) ≤ c
nk

γ
+ 5γ

∑
j∈[k]

demand(j) ·t,

for some constant c.
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More Result

Recall our main upper bound

R(t) ≤ c
nk

γ
+ 5γ

∑
j∈[k]

demand(j) ·t,

Lower bound for any constant memory algorithm

R(t) = n/2 + Ω

γ∗∑
j∈[k]

demand(j) ·t



Improved upper bound: Using more memory and
synchronized rounds, we can decrease the constant in front
of
(
γ
∑

j∈[k] demand(j)
)
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Lower Bound

Feedback in the grey area close to 0 is very fuzzy
If ants stay for a long time in the grey area, then it’s very
likely that many ants receive the incorrect feedback for a
number of steps
This number exceeds the size of the state space
In other they will join (otherwise they would never join)
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Better Upper Bound
How to beat the lower bound (less regret) if we allow more
memory?

overload(j)γ∗demand(j)−γ∗demand(j) 0

grey zone
Prob. of receiving feedback overload

1
2

1
n6

w.h.p all ants
receive feedback

lack

w.h.p all ants
receive feedback

surplus

(= demand(j) − load(j))

Solution: Take more samples (longer phases)
Less likely that each sample is correct (since samples are
closer to 0 deficit)
However, longer rounds allow us to amplify the probability
to compensate completely for this
From here on the analysis is equal to before
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Open Problems

Do we need odd/even rounds?
Can we design an algorithm that will work for relaxed
synchronicity? (random subset of ants chosen etc)
How much does communication help?

Thank you! Questions?
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