
• The noise state network is a ring attractor, with 
symmetric attractor states. When resampled, it falls 
into an attractor state uniformly at random.

• Attractor states ensure the network is robust to noise, 
compared with an ensemble of random neurons.

• A Hopfield network [5] is a fully connected network of 
N neurons with update rule:

• For appropriate     , the network state will fall into one 
of several chosen attractor states, robust to noise.

• Attractor states are a common model for memories.
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Future directions

Structure of noise states

Why stochastic transitions?
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Probabilistic models of cognition (see e.g. [1])
• Enable stochastic simulations, such as tracking noisy 
movements of objects [2] or reasoning with uncertainty 
about sequences of events [3].

• Allow for statistical inference using MCMC methods.
• Model observed processes in birdsong etc. [4]

In a Markov chain, the future depends only on the 
present; this captures many natural applications.

Why attractor networks?
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Example output

• Determine network capacity and noise robustness.
• Construct statistical inference model for attractor 
networks using Markov Chain Monte Carlo methods.

• Improve clock gating mechanism for transitions.
• Develop biologically plausible on-line learning rule.

Structure of the network

Why the mixed state?

 

How to go from deterministic to stochastic?
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• The next memory state is determined by the 
concatenation of the current state and a noise state.

(memory(t), noise(t)) → memory(t+1)
• There is strong linear dependence between such 
concatenations, so Cover’s theorem breaks down [6].

• We use a random matrix to project (memory, noise) 
pairs to a higher-dimensional space, where the 
corresponding mixed states are linearly separable.
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• The function            denotes a noise function that is 
resampled uniformly at random at intervals of   .

• The function            is 1 (else 0) if                         .

• The weight matrix        is learned using Hebb’s rule,
         using the perceptron rule, and          as in [7].
• The weight matrices          and         are random, while
        is chosen to instantiate a ring attractor network.


