Markov Transitions between Attractor States in a Recurrent Neural Network
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Introduction Network design

Why stochastic transitions? Structure of the network Example output

Probabilistic models of cognition (see e.qg. [1])
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- Enable stochastic simulations, such as tracking noisy p Mixed state =\ R
movements of objects [2] or reasoning with uncertainty g z? ‘
delay delay 1 "
about sequences of events [3].
* Allow for statistical inference using MCMC methods.
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* Model observed processes in birdsong etc. [4]
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In a Markov chain, the future depends only on the > 0.6
present; this captures many natural applications. 2 0.4
s
Why attractor networks? S 0.2
* A Hopfield network [5] is a fully connected network of N . — °
- . T; < sign Jihxy +v(t,T) 200 500
N neurons with update rule: — Time. t
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« For appropriate J;;, the network state will fall into one The weight matrix J™ Is learned using Hebb's rule,
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of several chosen attractor states, robust to noise. The function v(t,7) denotes a noise function that is J* using the perceptroj\r} rule, a&e JMQ as in [7].
» Attractor states are a common model for memories resampled uniformly at random at intervals of . * The weight matrices J9* and J*" are random, while
| » The function 7°°(t) is 1 (else 0) if t=0 (mod 7). J" is chosen to instantiate a ring attractor network.

How to go from deterministic to stochastic?
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Why the_ mixed §tate- Future directions

* The next memory state is determined by the
concatenation of the current state and a noise state. * Determine network capacity and noise robustness.
(memory(t), noise(t)) — memory(t+1) » Construct statistical inference model for attractor
* There is strong linear dependence between such networks using Markov Chain Monte Carlo methods.
concatenations, so Cover’s theorem breaks down [6]. ~ *Improve clock gating mechanism for transitions.
We use a random matrix to project (memory, noise) * Develop biologically plausible on-line learning rule.

pairs to a higher-dimensional space, where the
corresponding mixed states are linearly separable. References
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