

Universal Shape Formation for Programmable Matter (Thim Strothmann)

Joint work with

Video on this slide was deleted to decrease file size. For inspiration Video (scene from Big Hero six) visit https://www.youtube.com/watch?v=fF1rDKEC0TI.

Motivation - Applications

The amoebot Model

Overarching Constraint: Maintain Connectivity

4

The amoebot Model

- "Standard" asynchronous computation model
 - Only one particle is activated in each time step
 - Once activated a particle can compute, communicate and perform one move
 - an adversary activates particles
- Round: every particle is activated at least once

Shape Formation Problem

Naive Shape Formation Problem

Video on this slide was deleted to decrease file size. For naïve Shape Formation algorithms (Hexagon & Triangle) visit <u>http://sops.cs.upb.de/</u>.

In general not possible, i.e.,

Nº3

Input: constant size set of faces

Goal:

- build shape given by faces (scaled-up and possibly rotated)
- scale to include all particles (no leftover particles)

Our Result:

Given any shape described by a constant number of faces, our algorithm builds that shape using all particles in the system in $O(\sqrt{n})$ rounds.

Note: $O(\sqrt{n})$ rounds is not possible if we start in an arbitrary initial configuration.

Movement Primitives:

2) Triangle expansion/ contraction/ rotation ($O(\ell)$ rounds)

Intermediate Structure

Intermediate Structure

Building the final shape:

The devil is in the details:

 Take care of the imperfection of the intermediate structure without moving it.

• Make up for the estimation errors of ℓ .

The devil is in the details:

Triangles have to be cut to different sizes (+ incorporate waste).

• The intermediate structure might block the final building process

Summary & Future Work

Result: Given any shape described by a constant number of faces, our algorithm builds that shape using all particles in the system in $O(\sqrt{n})$ rounds.

Interesting Challenges:

- arbitrary configuration of low diameter
- non-constant size shapes

• 3D

Failures

Corresponding Publication:

Zahra Derakhshandeh, Robert Gmyr, Andréa W. Richa, Christian Scheideler, Thim Strothmann: Universal Shape Formation for Programmable Matter. SPAA 2016: 289-299 (http://doi.acm.org/10.1145/2935764.2935784)

For videos of some of our algorithms and a (slightly outdated) publication history in the topic visit:

http://sops.cs.upb.de/