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1. Introduction
• Ants appear to use estimates of colony density (number of ants 

per unit area), in solving typical ant colony problems:
• Searching for a new nest: Ants decide to accept a nest when they 

detect that the ant density in the nest has become sufficiently high 
[Pratt 05].

• Engaging or retreating:  Ants may decide to engage or retreat based 
on relative density of their own vs. an enemy colony [Adams 90] .

• Task allocation:  Ants may choose tasks based on densities of ants 
already allocated to various tasks [Gordon 99], [Schafer, Holmes, 
Gordon 06].

• Estimate density based on encounter rates 
[Gordon, Paul, Thorpe 93], [Pratt 05].

• Q: How might this work, and how accurate 
are the estimates?



Density estimation in distributed systems
• Similarly, agents in distributed systems could use density 

estimates in solving distributed computing problems:
• Robot swarms:  

• Robots can determine the frequency of certain properties within the 
swarm, such as detecting an environment event.

• Robots can allocate themselves to tasks, or distribute themselves evenly 
around an area.

• Social networks:  
• One could estimate the size of a network by launching 

agents and observe how frequently they encounter others 
[Katzir, Liberty, Somekh 11].

• Estimating density is equivalent to:
• Estimating the number of agents, if the area is known, or
• Estimating the area, if the number of agents is known.



How we got interested:
• Distributed House-Hunting in Ant Colonies [Ghaffari, 

Lynch, Musco, Radeva PODC 15].
• Algorithm: Ants evaluate nest desirability by determining numbers 

of ants in the nests and how the numbers change over time.
• 𝑂(log	𝑛) time until termination.
• Approximately matching lower bound, Ω(log 𝑛).

• This assumes that an ant can determine the number of 
ants in a nest precisely.
• Typical sort of assumption for distributed algorithms.
• Not realistic for ants:  they cannot count precisely, they move,…
• Makes the algorithm too fragile, for a biological algorithm.

• Led us to study approximate counting, 
which could be implemented by 
estimating density.



Our latest algorithm
• Ant-Inspired Density Estimation via Random Walks [Lynch, 

Musco, Su  PODC 16, arXiv]
• Uses encounter rates, as suggested by [Gordon, Paul, Thorpe 

93], [Pratt 05].
• Specifically:

• Ants wander in a 2-D plane, using independent random walks.
• Each ant determines its number of encounters per unit time.
• Uses that as a density estimate (number of ants per unit area).

• Notes:
• This assumes that an ant can count its number of encounters, 

although ants cannot count precisely.
• Actually, the algorithm is not so fragile---approximate 

counting should be good enough.
• But for now, just pretend an ant can count its 

encounters precisely.



Our algorithm
• Geometry is important for our results.
• 2-dimensional plane.
• Discretize space: Describe the plane as a grid, with ants 

on the nodes.

• Then fold the grid into a torus:



Our algorithm
• Discretize time: Synchronous rounds.
• Algorithm:  

• In each round, each ant takes a step in a random direction, sees how 
many ants it encounters at the new position, and adds this number to 
a running 𝑐𝑜𝑢𝑛𝑡.

• After 𝑡	rounds, it outputs the value of the ratio /01233 .

• Claim: This is a good estimate for the ant density 𝑑 = 	 2
6786 .

• Q: How good?
• A: With “high probability”, the estimate is correct to within a 

small inaccuracy 𝜖,	provided that the number 𝑡 of rounds is 
at least a certain constant times ;

<=>	times log	( ;<=).





• Then they work in synchronous rounds.
• At every round, each ant can choose (deterministically or 

probabilistically) to move one step in any direction, or to 
not move.  

• In every round, each ant can detect how many other ants 
have reached the same grid location in the same round.

• It can also remember these numbers, e.g., by 
accumulating them in a single internal 𝑐𝑜𝑢𝑛𝑡 variable.

2. Model and Problem
• Torus grid, 𝐴	locations, 𝐴� 	 by 𝐴� .
• Ants start at (uniformly, independently 

chosen) random locations.



The Density 
Estimation problem

• Each ant should continually output its latest estimate of 
the density 𝑑 = 𝑛/𝐴, where 𝑛 is the total number of ants 
and 𝐴 is the total number of grid points in the torus.

• Ants are not assumed to know 𝑛 or 𝐴, and don’t need to 
determine these---just the ratio.
• But if they happen to know 𝑛 or 𝐴, the density estimate yields an 

estimate of the other.



3. The Algorithm

• Simplest possible!
• Ants are initially randomly placed at grid locations.
• Algorithm for ant 𝑎C:

• Local variables:  
• 𝑐𝑜𝑢𝑛𝑡, initially 0
• 𝑡𝑖𝑚𝑒, initially 0

• At every round:
• Set 𝑡𝑖𝑚𝑒 ∶= 	𝑡𝑖𝑚𝑒 + 1.
• Move in any of the four directions, each with probability ¼.
• See how many other ants have reached the same grid location in the 

same round.
• Add that number to 𝑐𝑜𝑢𝑛𝑡.
• Output estimate 𝑒𝑠𝑡 = M0123

3CN8
.



• Algorithm for ant 𝑎C:
• At every round:

• Set 𝑡𝑖𝑚𝑒 ∶= 	𝑡𝑖𝑚𝑒 + 1.
• Move in any of the four directions, each with probability ¼.
• See how many other ants have reached the same grid location in the 

same round.
• Add that number to 𝑐𝑜𝑢𝑛𝑡.
• Output estimate 𝑒𝑠𝑡 = M0123

3CN8
.	

• Q: Why is M0123
3CN8

	a plausible estimate for density 𝑑 = 𝑛/𝐴 ?
• 𝑑 = 𝑛/𝐴 is the expected number of ants at any particular location at any 

particular time.
• M0123

3CN8
	is the average number any particular ant sees at any time.

• Those are the same.

The Algorithm



4. The Analysis

• How does this behave?
• Theorem 1: The expected value of any ant’s estimate is 

equal to the actual ant density 𝑑 = 𝑛/𝐴.
• As we just argued.
• But we also want a high-probability result:  With “high 

probability”, the estimate is correct to within 𝜖,	provided 
that the number 𝑡 of rounds is “sufficiently large”.

• Having the right expectation doesn’t automatically imply 
high probability that our estimate is close to the 
expectation.



Analysis
• High-probability result:  With “high probability”, the estimate is 

correct to within 𝜖,	provided that the number 𝑡 of rounds is 
“sufficiently large”.

• In completely-connected graphs, a high-
probability result follows easily:
• Any ant is equally likely to go anywhere at each 

round.
• Occurrences of encounters are essentially 

independent at each round. 
• Standard probability results (Chernoff bounds) yield 

a good high-probability result:

• Theorem 2 (for complete graphs):  With “high probability”, the 
estimate is correct to within 𝜖,	provided that the number 𝑡 of 
rounds is at least a certain constant times ;

<=>
	.



Analysis
• We say that the complete graph has fast mixing time, meaning 

there is little correlation between successive locations for an ant.
• On the other hand, the torus grid graph has slow mixing time---

strong correlation between successive locations for an ant.
• Thus, when ant 𝑎C	encounters ant 𝑎O in some round, it is likely to 

encounter it again in the following rounds.
• High variance in time between successive encounters.

• Still, we obtain:
• Theorem 3 (for torus grid graphs):  With “high probability”, the 

estimate is correct to within 𝜖,	provided that the number 𝑡 of 
rounds is at least a certain constant times ;

<=>
	times log	( ;

<=
).



Analysis
• Theorem 3 (for torus grid graphs):  

With “high probability”, the estimate 
is correct to within 𝜖,	provided that 
the number 𝑡 of rounds is at least a 
constant times ;

<=>
	times log	( ;

<=
).

• Proof:
• Calculations, based on bounding the moments of the distribution of 

numbers of encounters.  
• See [Lynch, Musco, Su, PODC 16, arXiv] for details.

• Key Lemma 4 (Re-collision bound):  If 𝑎C and 𝑎O collide in round 
𝑟, then the probability that they collide again in round 𝑟	 + 	𝑚	is 
(approximately) Θ ;

NR;
+ 𝑂 ;

S
.	



• We have shown that a very simple random exploration 
algorithm for the 2-dimensional plane gives accurate 
estimates of colony density, even though collisions at 
successive rounds are not independent.

• May be useful for understanding insect behavior:
• Searching for a new nest
• Engaging or retreating
• Allocating ants to tasks

• And for distributed computing:
• Robot swarms
• Estimating the size of a large social network
• See [Lynch, Musco, Su 16] for some examples.

5. Discussion



Results:  Other graph classes graphs
• Density estimation for other classes of graphs:  

• Rings
• Higher-dimensional tori
• Regular expanders
• Hypercubes

• The key in each case is a re-collision bound, e.g., for a ring:
• Key Lemma (Re-collision bound):  If 𝑎C and 𝑎O collide in round 
𝑟, then the probability that they collide again in round 𝑟	 + 	𝑚	is 
(approximately) Θ ;

N� R;
+ 𝑂 ;

S
.

• We use a general result that converts re-collision bounds to 
bounds for density estimation.



Results:  Network size estimation
• Estimate the size (area) of a social network by regarding it as a 

large directed graph, edges corresponding to network links.  
• Algorithm:

• Launch a number 𝑘 of agents to follow links randomly and uniformly.  
• See how often the agents collide.  
• Use this to produce an estimate of density, which automatically yields 

an estimate of size since we know 𝑘.
• Issues:

• Graph isn’t regular, unlike grid.  Compensate by using degree weights.
• Initial distribution:

• Can’t place agents uniformly on nodes.
• Instead, place them according to stationary 

distribution of a random walk of the network.
• Implement by using an initial “burn-in” period.



Future work:  Robustness
• Inexact counting of collisions:

• Ants cannot count exact numbers of encounters.
• Consider approximate counting, e.g., to within a factor of 2.
• How does this affect the bounds?

• Inexact probabilities for choosing directions
• Dynamic setting:  

• What happens if the number of agents, or the network, or both, 
change during execution of the algorithm?

• Adjust the estimation procedure?



Future work:  Ant house-hunting
• [Ghaffari, Lynch, Musco, Radeva PODC 15].
• Ants evaluate nest desirability by determining the numbers of 

ants in the nests and how the numbers change over time.
• Assumes ants can count the number of ants in a nest exactly.

• Now reconsider house-hunting algorithms using inexact 
estimates of ant density instead of exact counts.

• Implement these estimates using our density-estimation 
algorithms.

• Q:  How exactly do the algorithms fit together?



Thank you!



Thank you!


