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(a) Clustered (b) Power law (c) Random

Fig. 5 256 resources are placed in one of three distributions: (a) the clustered distribution has four piles of 16
resources; (b) the power law distribution uses piles of varying size and number: one large pile of 64 resources,
4 medium piles of 16 resources, 16 small piles of 4 resources, and 64 randomly placed resources; and (c) the
random distribution has each resource placed at a uniform random location.

We also observed resource detection error for physical robots searching for resources,
and for robots searching for neighboring resources. Resource-searching robots attempt to
physically align with a QR tag, using small left and right rotations and forward and back-
ward movements to center the tag in their downward-facing camera. Robots searching for
neighboring resources do not use this alignment strategy, but instead simply rotate 360�,
scanning for a tag every 10� with their downward-facing camera. We replicated each test 20
times for each of 3 robots; means for both types of resource detection error were calculated
using 60 samples each. We observed that resource-searching robots detected 55% of tags
and neighbor-searching robots detected 43% of tags.

3.5 Experimental Setup

• Physical: Each physical experiment runs for 60 minutes on a 100 m2 indoor concrete
surface. Robots forage for 256 resources represented by 4 cm2 QR matrix barcode tags.
A cylindrical illuminated beacon with radius 8.9 cm and height 33 cm marks the center
nest to which the robots return once they have located a resource. This center point is
used for localization and error correction by the robots’ ultrasonic sensors, magnetic
compass, and forward-facing camera. All robots involved in an experiment are initially
placed near the beacon. Robots are programmed to stay within a ‘virtual fence’ that is
a radius of 5 m from the beacon. In every experiment, QR tags representing resources
are arranged in one of three distributions (see Figure 5): clustered (4 randomly placed
clusters of 64 resources each), power law (1 large cluster of 64, 4 medium clusters of 16,
16 small clusters of 4, and 64 randomly scattered), or random (each resource placed at
a random location). Experiments are run using single robots, as well as teams of 3 and
6. Results for each experimental treatment are averaged over five replicates.

Robot locations are continually transmitted over one-way WiFi communication to
a central server and logged for later analysis. Robots do not pick up physical tags, but
instead simulate this process by reading the tag’s QR code, reporting the tag’s unique
identification number to a server, and returning within a 50 cm radius of the beacon,
providing a detailed record of tag discovery. Tags can only be read once, simulating tag
retrieval.
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Algorithm 1 Central-Place Foraging Algorithm
1: Disperse from nest to random location
2: while experiment running do
3: Conduct uninformed correlated random walk
4: if resource found then
5: Collect resource
6: Count number of resources c near current location l f
7: Return to nest with resource
8: if Pois(c, λlp) > U (0, 1) then
9: Lay pheromone to l f
10: end if
11: if Pois(c, λs f ) > U (0, 1) then
12: Return to l f
13: Conduct informed correlated random walk
14: else if pheromone found then
15: Travel to pheromone location l p
16: Conduct informed correlated random walk
17: else
18: Choose new random location
19: end if
20: end if
21: end while

• Search with informed walk: If the robot is informed about the location of resources (via
site fidelity or pheromones), it searches using an informed correlated random walk, where
the standard deviation σ is defined by Eq. 3:

σ = ω + (4π − ω)e−λid t (3)

The standard deviation of the successive turning angles of the informed random walk
decays as a function of time t , producing an initially undirected and localized search
that becomes more correlated over time. This time decay allows the robot to search locally
where it expects to find a resource, but to straighten its path and disperse to another location
if the resource is not found. If the robot discovers a resource, it will collect the resource by
adding it to a list of collected items, and transition to sensing the local resource density.
Robots that have not found a resource will give up searching and return to the nest with
probability pr .

• Sense local resource density: When the robot locates and collects a resource, it records a
count c of resources in the immediate neighborhood of the found resource. This count c
is an estimate of the density of resources in the local region.

• Return to nest: After sensing the local resource density, the robot returns to the nest. At the
nest, the robot uses c to decide whether to use information by (1) returning to the resource
neighborhood using site fidelity, or (2) following a pheromone waypoint. The robot may
also decide to communicate the resource location as a pheromone waypoint.

Information decisions are governed by parameterization of a Poisson cumulative distrib-
ution function (CDF) as defined by Eq. 4:

Pois(k, λ) = e−λ
⌊k⌋∑

i=0

λi

i ! (4)

The Poisson distribution represents the probability of a given number of events occurring
within a fixed interval of time. We chose this formulation because of its prevalence in previous
ant studies, e.g., researchers have observed Poisson distributions in the dispersal of foragers

123
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Table 1 Set of 7 CPFA parameters evolved by the GA

Parameter Description Initialization Function

ps Probability of switching to searching U(0,1)
pr Probability of returning to nest U(0,1)
ω Uninformed search variation U(0,4π)
λid Rate of informed search decay exp(5)
λs f Rate of site fidelity U(0,20)
λl p Rate of laying pheromone U(0,20)
λpd Rate of pheromone decay exp(10)

may set its search location using site fidelity or pheromone waypoints, as described
below.

• Travel to search site: The robot travels along the heading θ , continuing on this path
until it transitions to searching with probability ps.

• Search with uninformed walk: If the robot is not returning to a previously found re-
source location via site fidelity or pheromones, it begins searching using a correlated
random walk with fixed step size and direction θt at time t, defined by Equation ??:

θt =N (θt−1,ω) (1)

The standard deviation σ determines how correlated the direction of the next step is
with the direction of the previous step. Robots initially search for resources using an
uninformed correlated random walk, where σ is assigned a fixed value in Equation ??:

σ ← ω (2)

If the robot discovers a resource, it will collect the resource by adding it to a list of
collected items, and transition to sensing the local resource density. Robots that have
not found a resource will give up searching and return to the nest with probability pr .

• Search with informed walk: If the robot is informed about the location of resources
(via site fidelity or pheromones), it searches using an informed correlated random walk,
where the standard deviation σ is defined by Equation ??:

σ = ω +(4π−ω)e−λid t (3)

The standard deviation of the successive turning angles of the informed random walk
decays as a function of time t, producing an initially undirected and localized search
that becomes more correlated over time. This time decay allows the robot to search
locally where it expects to find a resource, but to straighten its path and disperse to
another location if the resource is not found. If the robot discovers a resource, it will
collect the resource by adding it to a list of collected items, and transition to sensing the
local resource density. Robots that have not found a resource will give up searching and
return to the nest with probability pr .

• Sense local resource density: When the robot locates and collects a resource, it records
a count c of resources in the immediate neighborhood of the found resource. This count
c is an estimate of the density of resources in the local region.

• Return to nest: After sensing the local resource density, the robot returns to the nest.
At the nest, the robot uses c to decide whether to use information by i) returning to the
resource neighborhood using site fidelity, or ii) following a pheromone waypoint. The
robot may also decide to communicate the resource location as a pheromone waypoint.

•  Informa*on	
  decisions	
  governed	
  by	
  a	
  Poisson	
  CDF:	
  
-­‐  Robots	
  return	
  to	
  loca*on	
  of	
  discovered	
  resource	
  if	
  the	
  

count	
  of	
  nearby	
  resources	
  c	
  is	
  large	
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Algorithm 1 Central-Place Foraging Algorithm
1: Disperse from nest to random location
2: while experiment running do
3: Conduct uninformed correlated random walk
4: if resource found then
5: Collect resource
6: Count number of resources c near current location l f

7: Return to nest with resource
8: if POIS(c,λl p)>U(0,1) then
9: Lay pheromone to l f

10: end if
11: if POIS(c,λs f )>U(0,1) then
12: Return to l f

13: Conduct informed correlated random walk
14: else if pheromone found then
15: Travel to pheromone location lp

16: Conduct informed correlated random walk
17: else
18: Choose new random location
19: end if
20: end if
21: end while

• Search with informed walk: If the robot is informed about the location of resources
(via site fidelity or pheromones), it searches using an informed correlated random walk,
where the standard deviation σ is defined by Equation 3:

σ = ω +(4π−ω)e−λid t (3)

The standard deviation of the successive turning angles of the informed random walk
decays as a function of time t, producing an initially undirected and localized search
that becomes more correlated over time. This time decay allows the robot to search
locally where it expects to find a resource, but to straighten its path and disperse to
another location if the resource is not found. If the robot discovers a resource, it will
collect the resource by adding it to a list of collected items, and transition to sensing the
local resource density. Robots that have not found a resource will give up searching and
return to the nest with probability pr .

• Sense local resource density: When the robot locates and collects a resource, it records
a count c of resources in the immediate neighborhood of the found resource. This count
c is an estimate of the density of resources in the local region.

• Return to nest: After sensing the local resource density, the robot returns to the nest.
At the nest, the robot uses c to decide whether to use information by i) returning to the
resource neighborhood using site fidelity, or ii) following a pheromone waypoint. The
robot may also decide to communicate the resource location as a pheromone waypoint.

Information decisions are governed by parameterization of a Poisson cumulative distri-
bution function (CDF) as defined by Equation 4:

POIS(c,λ ) = e−λ
⌊c⌋

∑
i=0

λ i

i!
(4)

The Poisson distribution represents the probability of a given number of events occurring
within a fixed interval of time. We chose this formulation because of its prevalence in pre-
vious ant studies, e.g., researchers have observed Poisson distributions in the dispersal of

•  Pheromone	
  waypoints	
  decay	
  exponen*ally	
  over	
  *me:	
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foragers (Hölldobler and Wilson 1978), the density of queens (Tschinkel and Howard 1983),
and the rate at which foragers return to the nest (Prabhakar et al 2012).

In the CPFA, an event corresponds to finding an additional resource in the immediate
neighborhood of a found resource. Therefore, the distribution POIS(c,λ ) describes the like-
lihood of finding at least c additional resources, as parameterized by λ . The robot returns to
a previously found resource location using site fidelity if the Poisson CDF, given the count
c of resources, exceeds a uniform random value: POIS(c,λs f ) > U(0,1). Thus, if c is large,
the robot is likely to return to the same location using site fidelity on its next foraging trip.
If c is small, it is likely not to return, and instead follows a pheromone to another location if
pheromone is available. If no pheromone is available, the robot will choose its next search
location at random. The robot makes a second independent decision based on the count c

of resources: it creates a pheromone waypoint for a previously found resource location if
POIS(c,λlp)> U(0,1).

Upon creating a pheromone waypoint, a robot transmits the waypoint to a list maintained
by a central server. As each robot returns to the nest, the server selects a waypoint from the
list (if available) and transmits it to the robot. New waypoints are initialized with a value of
1. The strength of the pheromone, γ , decays exponentially over time t as defined by Equation
5:

γ = e−λpdt (5)

Waypoints are removed once their value drops below a threshold of 0.001. We use the same
pheromone-like waypoints in simulation to replicate the behavior of the physical iAnts.

3.2 Genetic Algorithm

There are an uncountable number of foraging strategies that can be defined by the real-
valued CPFA parameter sets in Table 1 (even if the 7 parameters were limited to single
decimal point precision, there would be 710 possible strategies). We address this intractable
problem by using a GA to generate foraging strategies that maximize foraging efficiency for
a particular error model, resource distribution, and swarm size.

The GA evaluates the fitness of each strategy by simulating robots that forage using
the CPFA parameter set associated with each strategy. Fitness is defined as the foraging
efficiency of the robot swarm: the total number of resources collected by all robots in a fixed
time period. Because the fitness function must be evaluated many times, the simulation must
run quickly. Thus, we use a parsimonious simulation that uses a gridded, discrete world
without explicitly modeling sensors or collision detection. This simple fitness function also
helps to mitigate condition-specific idiosyncrasies and avoid overfitted solutions, a problem
noted by Francesca et al (2014).

We evolve a population of 100 simulated robot swarms for 100 generations using recom-
bination and mutation. Each swarm’s foraging strategy is randomly initialized using uniform
independent samples from the initialization function for each parameter (Table 1). Five pa-
rameters are initially sampled from a uniform distribution, U(a,b), and two from exponential
distributions, exp(x), within the stated bounds. Robots within a swarm use identical param-
eters throughout the hour-long simulated foraging experiment. During each generation, all
100 swarms undergo 8 fitness evaluations, each with different random placements drawn
from the specified resource distribution.

At the end of each generation, the fitness of each swarm is evaluated as the sum total of
resources collected in the 8 runs of a generation. Deterministic tournament selection with

-­‐  Robots	
  can	
  use	
  memory	
  (site	
  fidelity,	
  λ	
  =	
  λsf)	
  or	
  communica*on	
  
(pheromone-­‐like	
  waypoints,	
  λ	
  =	
  λlp)	
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Fig. 3 (a) State diagram describing the flow of behavior for individual robots during an experiment. (b) An
example of a single cycle through this search behavior. The robot begins its search at a central nest site (double
circle) and sets a search location. The robot then travels to the search site (solid line). Upon reaching the
search location, the robot searches for resources (dotted line) until a resource (square) is found and collected.
After sensing the local resource density, the robot returns to the nest (dashed line).

Table 1 Set of 7 CPFA parameters evolved by the GA

Parameter Description Initialization Function

ps Probability of switching to searching U(0,1)
pr Probability of returning to nest U(0,1)
ω Uninformed search variation U(0,4π)
λid Rate of informed search decay exp(5)
λs f Rate of site fidelity U(0,20)
λl p Rate of laying pheromone U(0,20)
λpd Rate of pheromone decay exp(10)

• Set search location: The robot starts at a central nest and selects a dispersal direction,
θ , initially from a uniform random distribution, U(0,2π). In subsequent trips, the robot
may set its search location using site fidelity or pheromone waypoints, as described
below.

• Travel to search site: The robot travels along the heading θ , continuing on this path
until it transitions to searching with probability ps.

• Search with uninformed walk: If the robot is not returning to a previously found re-
source location via site fidelity or pheromones, it begins searching using a correlated
random walk with fixed step size and direction θt at time t, defined by Equation 1:

θt =N (θt−1,σ ) (1)

The standard deviation σ determines how correlated the direction of the next step is
with the direction of the previous step. Robots initially search for resources using an
uninformed correlated random walk, where σ is assigned a fixed value in Equation 2:

σ ← ω (2)

If the robot discovers a resource, it will collect the resource by adding it to a list of
collected items, and transition to sensing the local resource density. Robots that have
not found a resource will give up searching and return to the nest with probability pr .
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Algorithm 1 Central-Place Foraging Algorithm
1: Disperse from nest to random location
2: while experiment running do
3: Conduct uninformed correlated random walk
4: if resource found then
5: Collect resource
6: Count number of resources c near current location l f
7: Return to nest with resource
8: if Pois(c, λlp) > U (0, 1) then
9: Lay pheromone to l f
10: end if
11: if Pois(c, λs f ) > U (0, 1) then
12: Return to l f
13: Conduct informed correlated random walk
14: else if pheromone found then
15: Travel to pheromone location l p
16: Conduct informed correlated random walk
17: else
18: Choose new random location
19: end if
20: end if
21: end while

• Search with informed walk: If the robot is informed about the location of resources (via
site fidelity or pheromones), it searches using an informed correlated random walk, where
the standard deviation σ is defined by Eq. 3:

σ = ω + (4π − ω)e−λid t (3)

The standard deviation of the successive turning angles of the informed random walk
decays as a function of time t , producing an initially undirected and localized search
that becomes more correlated over time. This time decay allows the robot to search locally
where it expects to find a resource, but to straighten its path and disperse to another location
if the resource is not found. If the robot discovers a resource, it will collect the resource by
adding it to a list of collected items, and transition to sensing the local resource density.
Robots that have not found a resource will give up searching and return to the nest with
probability pr .

• Sense local resource density: When the robot locates and collects a resource, it records a
count c of resources in the immediate neighborhood of the found resource. This count c
is an estimate of the density of resources in the local region.

• Return to nest: After sensing the local resource density, the robot returns to the nest. At the
nest, the robot uses c to decide whether to use information by (1) returning to the resource
neighborhood using site fidelity, or (2) following a pheromone waypoint. The robot may
also decide to communicate the resource location as a pheromone waypoint.

Information decisions are governed by parameterization of a Poisson cumulative distrib-
ution function (CDF) as defined by Eq. 4:

Pois(k, λ) = e−λ
⌊k⌋∑

i=0

λi

i ! (4)

The Poisson distribution represents the probability of a given number of events occurring
within a fixed interval of time. We chose this formulation because of its prevalence in previous
ant studies, e.g., researchers have observed Poisson distributions in the dispersal of foragers
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(a) Clustered (b) Power law (c) Random

Fig. 5 256 resources are placed in one of three distributions: (a) the clustered distribution has four piles of 16
resources; (b) the power law distribution uses piles of varying size and number: one large pile of 64 resources,
4 medium piles of 16 resources, 16 small piles of 4 resources, and 64 randomly placed resources; and (c) the
random distribution has each resource placed at a uniform random location.

We also observed resource detection error for physical robots searching for resources,
and for robots searching for neighboring resources. Resource-searching robots attempt to
physically align with a QR tag, using small left and right rotations and forward and back-
ward movements to center the tag in their downward-facing camera. Robots searching for
neighboring resources do not use this alignment strategy, but instead simply rotate 360�,
scanning for a tag every 10� with their downward-facing camera. We replicated each test 20
times for each of 3 robots; means for both types of resource detection error were calculated
using 60 samples each. We observed that resource-searching robots detected 55% of tags
and neighbor-searching robots detected 43% of tags.

3.5 Experimental Setup

• Physical: Each physical experiment runs for 60 minutes on a 100 m2 indoor concrete
surface. Robots forage for 256 resources represented by 4 cm2 QR matrix barcode tags.
A cylindrical illuminated beacon with radius 8.9 cm and height 33 cm marks the center
nest to which the robots return once they have located a resource. This center point is
used for localization and error correction by the robots’ ultrasonic sensors, magnetic
compass, and forward-facing camera. All robots involved in an experiment are initially
placed near the beacon. Robots are programmed to stay within a ‘virtual fence’ that is
a radius of 5 m from the beacon. In every experiment, QR tags representing resources
are arranged in one of three distributions (see Figure 5): clustered (4 randomly placed
clusters of 64 resources each), power law (1 large cluster of 64, 4 medium clusters of 16,
16 small clusters of 4, and 64 randomly scattered), or random (each resource placed at
a random location). Experiments are run using single robots, as well as teams of 3 and
6. Results for each experimental treatment are averaged over five replicates.

Robot locations are continually transmitted over one-way WiFi communication to
a central server and logged for later analysis. Robots do not pick up physical tags, but
instead simulate this process by reading the tag’s QR code, reporting the tag’s unique
identification number to a server, and returning within a 50 cm radius of the beacon,
providing a detailed record of tag discovery. Tags can only be read once, simulating tag
retrieval.
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(a) Clustered (b) Power law (c) Random

Fig. 5 256 resources are placed in one of three distributions: (a) the clustered distribution has four piles of 16
resources; (b) the power law distribution uses piles of varying size and number: one large pile of 64 resources,
4 medium piles of 16 resources, 16 small piles of 4 resources, and 64 randomly placed resources; and (c) the
random distribution has each resource placed at a uniform random location.

We also observed resource detection error for physical robots searching for resources,
and for robots searching for neighboring resources. Resource-searching robots attempt to
physically align with a QR tag, using small left and right rotations and forward and back-
ward movements to center the tag in their downward-facing camera. Robots searching for
neighboring resources do not use this alignment strategy, but instead simply rotate 360�,
scanning for a tag every 10� with their downward-facing camera. We replicated each test 20
times for each of 3 robots; means for both types of resource detection error were calculated
using 60 samples each. We observed that resource-searching robots detected 55% of tags
and neighbor-searching robots detected 43% of tags.

3.5 Experimental Setup

• Physical: Each physical experiment runs for 60 minutes on a 100 m2 indoor concrete
surface. Robots forage for 256 resources represented by 4 cm2 QR matrix barcode tags.
A cylindrical illuminated beacon with radius 8.9 cm and height 33 cm marks the center
nest to which the robots return once they have located a resource. This center point is
used for localization and error correction by the robots’ ultrasonic sensors, magnetic
compass, and forward-facing camera. All robots involved in an experiment are initially
placed near the beacon. Robots are programmed to stay within a ‘virtual fence’ that is
a radius of 5 m from the beacon. In every experiment, QR tags representing resources
are arranged in one of three distributions (see Figure 5): clustered (4 randomly placed
clusters of 64 resources each), power law (1 large cluster of 64, 4 medium clusters of 16,
16 small clusters of 4, and 64 randomly scattered), or random (each resource placed at
a random location). Experiments are run using single robots, as well as teams of 3 and
6. Results for each experimental treatment are averaged over five replicates.

Robot locations are continually transmitted over one-way WiFi communication to
a central server and logged for later analysis. Robots do not pick up physical tags, but
instead simulate this process by reading the tag’s QR code, reporting the tag’s unique
identification number to a server, and returning within a 50 cm radius of the beacon,
providing a detailed record of tag discovery. Tags can only be read once, simulating tag
retrieval.
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Fig. 10 For error-adapted swarms, (a) the probability of returning to a site and (b) the probability of laying
pheromone given the number of resources in the neighborhood of a found resource (Eq. 3).

parameters perform at 93% of the efficiency of cluster-adapted swarms on a clustered distri-
bution, and 96% of the efficiency of random-adapted swarms on a random distribution.

Figure 9 demonstrates that the GA is able to evolve both specialist and generalist strate-
gies. If the resource distribution is known a priori, then the robot swarm will be most ef-
ficient when using a specialist strategy adapted for that distribution. However, power-law-
adapted strategies function well on all three distributions because they are sufficiently gen-
eral – these swarms have evolved to efficiently collect both clustered resources and randomly
distributed resources. The GA evolves power-law-adapted strategies that use site fidelity
and pheromones, which are not necessary for foraging on random distributions, but they
allow swarms to exploit piled resources when present. These results suggest that power-
law-adapted strategies should be selected as a default behavior for swarms without a priori

knowledge of the resource distribution because they work well for both clustered and dis-
persed resources.

Figure 10 shows the probability of exploiting information about resource density in
the local neighborhood of a found resource by returning to the site via site fidelity (Fig.
10(a)) or laying pheromone (Fig. 10(b)). Swarms evolved for clustered distributions are
3.5 times less likely to return to a site via site fidelity with a single resource in the local
neighborhood, but 7.8 times more likely to lay pheromone, compared to swarms evolved for
power law distributions. Swarms evolved for random distributions have a significantly lower
probability of either returning to a site or laying pheromone.

While Figure 9 demonstrates that specialist strategies are most efficient, Figure 10 illus-
trates one way in which strategies are specialized. There are significant differences in how
each strategy evolves to use information: cluster-adapted strategies make most frequent use
of pheromone communication (Fig 10(b)), power-law-adapted strategies use mostly mem-
ory (site fidelity, Fig. 10(a)), and random-adapted strategies use information the least. For
low resource densities, strategies evolved for clustered distributions are more likely to lay
pheromones, and those evolved for power law distributions are more likely to use site fi-
delity. These strategies produced by the GA logically correspond with the resource distri-
bution for which they were evolved. All of the resources in the clustered distribution are
grouped into large piles, so finding a single resource indicates that additional resources are
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Figure 5: Results for physical and simulated robots foraging
in a world with error using parameters adapted for a world
with error, and parameters adapted for an error-free world.
80% more resources are collected using error-adapted pa-
rameters in physical robot teams, and 16% more are col-
lected in simulated teams. Robots collected significantly
more resources in both cases. Physical and simulated robots
using error-adapted parameters are not significantly differ-
ent.

Discussion

Teams of physical and simulated robots used a central-place
foraging algorithm (CPFA) to search for resources with and
without sensor error. A genetic algorithm (GA) was used to
evolve parameter sets which corresponded to robot team be-
haviors inspired by seed-harvester ants. We considered two
types of error, positional error and resource detection error,
and we explored the effects of error on overall resource col-
lection and on individual evolved parameters. Error-adapted
parameters improved performance of physical and simulated
robots in worlds with error. We observed that teams of
robots in error-adapted simulations collected resources at the
same rate as physical robots.

Both positional and detection errors have the potential to
confound a robot’s ability to properly use information to
exploit resources clustered via site fidelity or pheromones.
Large positional errors in the estimation of resource loca-
tions can cause robots to perform informed random walks in
regions without resources, thereby wasting time in detailed
searches of the wrong areas. Errors in detecting resources
can cause robots to underestimate the numbers of resources
in a local area, so that robots fail to take advantage of mem-
ory or communication to return or recruit other agents to
resource-rich locations.

Evolutionary algorithms have the potential to mitigate
sensing errors by selecting for parameters which perform
optimally given imperfect conditions. For example, robots

experiencing errors in resource detection benefit from a
lower threshold of resource density detection for trigger-
ing laying of a pheromone trail. Robots with positional er-
rors perform better with a faster decaying informed random
walk, so that they quickly abandon detailed searches when
there is a high probability that resources are not in remem-
bered or communicated locations.

Parameter values for simulated robots foraging on ran-
dom, clustered, and power law distributed resources (Fig. 3)
illustrate the GA’s ability to evolve sets of behaviors for each
distribution. Parameters for clustered and power law distri-
butions are similar, demonstrating the ability of the GA to
focus on exploiting clumped resources when available. The
lack of clustering in the random distribution induces the GA
to effectively disable site fidelity and pheromone following
behaviors, thus causing the adapted robot teams to concen-
trate on random exploration.

Fitness curves for simulations with and without error (Fig.
4(a)) demonstrate the ability of the GA to reliably converge.
Parameter values (Fig. 4(b)) demonstrate the ability of the
GA to evolve distinct sets of behaviors for an error-free
world compared to a world with error.

Results for parameters swapped from error-free worlds
into worlds with error (Fig. 5) show that parameters adapted
for imperfect worlds outperformed parameters adapted for
perfect worlds. Teams of physical and simulated robots col-
lected similar numbers of resources, particularly when us-
ing parameters adapted for error. Thus, evolutionary meth-
ods effectively adapt robot behavior to sensor error. These
results also mirror observations from our previous work in
which genetic algorithms were used to evolve optimal pa-
rameter sets for specific types of resource distributions.

The work presented here motivates estimation of real
robot error, evolution of parameters to fit with that error, and
programming of those evolved parameters into real robots.
In future work, we will conduct additional physical and sim-
ulated robot experiments using different numbers and distri-
butions of resources, arena sizes, and numbers of robots to
test whether simulations and physical experiments continue
to correspond as closely as we have observed here.
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(a) Clustered (b) Power law (c) Random

Fig. 5 256 resources are placed in one of three distributions: (a) the clustered distribution has four piles of 16
resources; (b) the power law distribution uses piles of varying size and number: one large pile of 64 resources,
4 medium piles of 16 resources, 16 small piles of 4 resources, and 64 randomly placed resources; and (c) the
random distribution has each resource placed at a uniform random location.

We also observed resource detection error for physical robots searching for resources,
and for robots searching for neighboring resources. Resource-searching robots attempt to
physically align with a QR tag, using small left and right rotations and forward and back-
ward movements to center the tag in their downward-facing camera. Robots searching for
neighboring resources do not use this alignment strategy, but instead simply rotate 360�,
scanning for a tag every 10� with their downward-facing camera. We replicated each test 20
times for each of 3 robots; means for both types of resource detection error were calculated
using 60 samples each. We observed that resource-searching robots detected 55% of tags
and neighbor-searching robots detected 43% of tags.

3.5 Experimental Setup

• Physical: Each physical experiment runs for 60 minutes on a 100 m2 indoor concrete
surface. Robots forage for 256 resources represented by 4 cm2 QR matrix barcode tags.
A cylindrical illuminated beacon with radius 8.9 cm and height 33 cm marks the center
nest to which the robots return once they have located a resource. This center point is
used for localization and error correction by the robots’ ultrasonic sensors, magnetic
compass, and forward-facing camera. All robots involved in an experiment are initially
placed near the beacon. Robots are programmed to stay within a ‘virtual fence’ that is
a radius of 5 m from the beacon. In every experiment, QR tags representing resources
are arranged in one of three distributions (see Figure 5): clustered (4 randomly placed
clusters of 64 resources each), power law (1 large cluster of 64, 4 medium clusters of 16,
16 small clusters of 4, and 64 randomly scattered), or random (each resource placed at
a random location). Experiments are run using single robots, as well as teams of 3 and
6. Results for each experimental treatment are averaged over five replicates.

Robot locations are continually transmitted over one-way WiFi communication to
a central server and logged for later analysis. Robots do not pick up physical tags, but
instead simulate this process by reading the tag’s QR code, reporting the tag’s unique
identification number to a server, and returning within a 50 cm radius of the beacon,
providing a detailed record of tag discovery. Tags can only be read once, simulating tag
retrieval.
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(a) Clustered (b) Power law (c) Random

Fig. 5 256 resources are placed in one of three distributions: (a) the clustered distribution has four piles of 16
resources; (b) the power law distribution uses piles of varying size and number: one large pile of 64 resources,
4 medium piles of 16 resources, 16 small piles of 4 resources, and 64 randomly placed resources; and (c) the
random distribution has each resource placed at a uniform random location.
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using 60 samples each. We observed that resource-searching robots detected 55% of tags
and neighbor-searching robots detected 43% of tags.

3.5 Experimental Setup

• Physical: Each physical experiment runs for 60 minutes on a 100 m2 indoor concrete
surface. Robots forage for 256 resources represented by 4 cm2 QR matrix barcode tags.
A cylindrical illuminated beacon with radius 8.9 cm and height 33 cm marks the center
nest to which the robots return once they have located a resource. This center point is
used for localization and error correction by the robots’ ultrasonic sensors, magnetic
compass, and forward-facing camera. All robots involved in an experiment are initially
placed near the beacon. Robots are programmed to stay within a ‘virtual fence’ that is
a radius of 5 m from the beacon. In every experiment, QR tags representing resources
are arranged in one of three distributions (see Figure 5): clustered (4 randomly placed
clusters of 64 resources each), power law (1 large cluster of 64, 4 medium clusters of 16,
16 small clusters of 4, and 64 randomly scattered), or random (each resource placed at
a random location). Experiments are run using single robots, as well as teams of 3 and
6. Results for each experimental treatment are averaged over five replicates.

Robot locations are continually transmitted over one-way WiFi communication to
a central server and logged for later analysis. Robots do not pick up physical tags, but
instead simulate this process by reading the tag’s QR code, reporting the tag’s unique
identification number to a server, and returning within a 50 cm radius of the beacon,
providing a detailed record of tag discovery. Tags can only be read once, simulating tag
retrieval.
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Adap*ng	
  movement	
  to	
  sensed	
  resource	
  density	
  

improves	
  search	
  given	
  small	
  clusters	
  



•  For	
  a	
  single	
  cluster	
  
–  pheromones:	
  8	
  *mes	
  beTer	
  than	
  random	
  

search	
  	
  
–  site	
  fidelity:	
  4	
  *mes	
  beTer	
  than	
  random	
  

search	
  
–  Value	
  of	
  informa*on	
  declines	
  exponen*ally	
  	
  
	
  	
  	
  	
  	
  	
  	
  with	
  the	
  log	
  of	
  the	
  number	
  of	
  resources	
  

•  For	
  many	
  small	
  clusters	
  
–  adap*ve	
  site	
  fidelity	
  is	
  4	
  *mes	
  beTer	
  than	
  

random	
  
•  For	
  randomly	
  distributed	
  resources	
  

–  informa*on	
  is	
  useless	
  

Value	
  of	
  Communica*on	
  depends	
  on	
  
informa*on	
  in	
  the	
  environment	
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(a) Clustered (b) Power law (c) Random

Fig. 5 256 resources are placed in one of three distributions: (a) the clustered distribution has four piles of 16
resources; (b) the power law distribution uses piles of varying size and number: one large pile of 64 resources,
4 medium piles of 16 resources, 16 small piles of 4 resources, and 64 randomly placed resources; and (c) the
random distribution has each resource placed at a uniform random location.

We also observed resource detection error for physical robots searching for resources,
and for robots searching for neighboring resources. Resource-searching robots attempt to
physically align with a QR tag, using small left and right rotations and forward and back-
ward movements to center the tag in their downward-facing camera. Robots searching for
neighboring resources do not use this alignment strategy, but instead simply rotate 360�,
scanning for a tag every 10� with their downward-facing camera. We replicated each test 20
times for each of 3 robots; means for both types of resource detection error were calculated
using 60 samples each. We observed that resource-searching robots detected 55% of tags
and neighbor-searching robots detected 43% of tags.

3.5 Experimental Setup

• Physical: Each physical experiment runs for 60 minutes on a 100 m2 indoor concrete
surface. Robots forage for 256 resources represented by 4 cm2 QR matrix barcode tags.
A cylindrical illuminated beacon with radius 8.9 cm and height 33 cm marks the center
nest to which the robots return once they have located a resource. This center point is
used for localization and error correction by the robots’ ultrasonic sensors, magnetic
compass, and forward-facing camera. All robots involved in an experiment are initially
placed near the beacon. Robots are programmed to stay within a ‘virtual fence’ that is
a radius of 5 m from the beacon. In every experiment, QR tags representing resources
are arranged in one of three distributions (see Figure 5): clustered (4 randomly placed
clusters of 64 resources each), power law (1 large cluster of 64, 4 medium clusters of 16,
16 small clusters of 4, and 64 randomly scattered), or random (each resource placed at
a random location). Experiments are run using single robots, as well as teams of 3 and
6. Results for each experimental treatment are averaged over five replicates.

Robot locations are continually transmitted over one-way WiFi communication to
a central server and logged for later analysis. Robots do not pick up physical tags, but
instead simulate this process by reading the tag’s QR code, reporting the tag’s unique
identification number to a server, and returning within a 50 cm radius of the beacon,
providing a detailed record of tag discovery. Tags can only be read once, simulating tag
retrieval.
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surface. Robots forage for 256 resources represented by 4 cm2 QR matrix barcode tags.
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nest to which the robots return once they have located a resource. This center point is
used for localization and error correction by the robots’ ultrasonic sensors, magnetic
compass, and forward-facing camera. All robots involved in an experiment are initially
placed near the beacon. Robots are programmed to stay within a ‘virtual fence’ that is
a radius of 5 m from the beacon. In every experiment, QR tags representing resources
are arranged in one of three distributions (see Figure 5): clustered (4 randomly placed
clusters of 64 resources each), power law (1 large cluster of 64, 4 medium clusters of 16,
16 small clusters of 4, and 64 randomly scattered), or random (each resource placed at
a random location). Experiments are run using single robots, as well as teams of 3 and
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Analy*cal	
  Model	
  of	
  Random	
  Foraging	
  

Diameter	
  of	
  a	
  Pile	
   Angle	
  of	
  a	
  Pile	
  

Probability	
  of	
  Hi|ng	
  At	
  Least	
  One	
  Pile	
  

Expected	
  Foraging	
  Rate	
  of	
  n	
  Ants	
  



Analy*cal	
  Model	
  of	
  Nest	
  Recruitment	
  

Value	
  of	
  a	
  Discovery:	
  	
  
Amount	
  Able	
  to	
  be	
  Collected	
  

Op*mal	
  Scout	
  Popula*on	
  (x)	
  

Expected	
  Foraging	
  Rate	
  of	
  n	
  Ants	
  

Value	
  of	
  nest	
  recruitment	
  

2np 
[Lev16]	
  

•  Assump*ons	
  eliminate	
  interes*ng	
  
environmental	
  features	
  

•  Results	
  are	
  sensi*ve	
  to	
  
–  op*mal	
  scout	
  number	
  
–  *ming	
  

•  Iden*fies	
  a	
  decrease	
  in	
  foraging	
  
rate	
  for	
  recruitment	
  given	
  many	
  
small	
  piles—where	
  adap*ve	
  sf	
  is	
  
most	
  useful	
  



[Qi16]	
  

Comparison	
  to	
  Determinis*c	
  Search	
  Naviga*ng	
  Obstacles	
  

CPFA	
  Extensions	
  

Clustering	
  to	
  Improve	
  
Exhaus*ve	
  search	
  

Surprisingly	
  efficient,	
  error-­‐tolerant,	
  
but	
  not	
  scalable	
  [Sto16]	
  

[Hec15]	
  

[Fri16]	
  

Number	
  of	
  robots	
  



Gramma*cal	
  Evolu*on	
  to	
  increase	
  CPFA	
  flexibility	
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Following	
  GESwarm*,	
  foraging	
  strategies	
  are	
  rule	
  sets	
  in	
  Extended	
  Backus	
  Naur	
  form	
  with	
  
precondi*ons,	
  behaviors	
  &	
  ac*ons.	
  
A	
  genotype	
  is	
  a	
  string	
  represen*ng	
  a	
  set	
  of	
  rules;	
  GA	
  performs	
  muta*on	
  &	
  cross-­‐over.	
  
Rules	
  are	
  instan*ated	
  and	
  run	
  in	
  an	
  environment	
  to	
  evaluate	
  fitness	
  (targets	
  collected)	
  

*[Fer15]	
  

precondi*ons	
  
behaviors	
  	
  
ac*ons	
  

	
  	
  
	
  

If	
  not-­‐holding	
  food	
  &	
  not-­‐on-­‐food	
  
	
  	
  	
  	
   	
  Random	
  walk	
  
If	
  on-­‐food	
  &	
  not-­‐holding-­‐food	
  
	
  	
  	
  	
  	
   	
  Pick-­‐up-­‐hold-­‐food	
  
If	
  holding-­‐food	
  

	
  Return-­‐to-­‐nest	
  



•  Increased	
  flexibility	
  
•  Phylogene*c	
  rela*onships	
  among	
  successful	
  

strategies	
  
•  constraints	
  of	
  evolu*onary	
  history?	
  

•  Generate	
  new	
  strategies:	
  
•  Add	
  behavioral	
  primi*ves	
  
•  Increasing	
  environmental	
  or	
  task	
  complexity	
  

Gramma*cal	
  Evolu*on	
  to	
  increase	
  CPFA	
  flexibility	
  



Complexity	
  Emerges	
  from	
  Simple	
  Algorithms	
  	
  
in	
  Complex	
  Environments	
  

T	
  cells	
  interact	
  with	
  
• Targets	
  
– Dendri*c	
  Cells	
  in	
  LN	
  
– Infected	
  cells	
  in	
  lung	
  

• Chemical	
  Cues	
  
– Chemokines	
  
– Inflamma*on	
  

• Structural	
  Features	
  
– FRCs	
  in	
  LN	
  
– Vasculature	
  in	
  lung	
  

• Each	
  other	
  (?)	
  



Flexibility	
  in	
  Mul*ple	
  Environments	
  
T	
  cells	
  in	
  Lung	
  vs.	
  Lymph	
  Nodes	
  

	
  How	
  do	
  T	
  cells	
  balance	
  
	
  search	
  thoroughness	
  vs	
  extent?	
  

What	
  changes	
  to	
  produce	
  different	
  
behaviors	
  in	
  different	
  environments?	
  





[Fri16]	
  

T	
  Cell	
  movement	
  neither	
  Levy	
  nor	
  Brownian	
  Lung	
  &	
  LN	
  
Correlated	
  Random	
  Walk	
  with	
  lognormal	
  step	
  sizes	
  	
  

	
  



Extensive	
  	
  

Thorough	
  

	
  
T	
  Cell	
  search	
  balances	
  	
  

unique	
  &	
  total	
  contacts	
  with	
  targets	
  
	
  

[Fri16]	
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T	
  cells	
  that	
  visit	
  hotspots	
  search	
  more	
  thoroughly	
  than	
  other	
  T	
  cells	
  
Hypothesis:	
  T	
  cells	
  alter	
  movement	
  in	
  response	
  to	
  environmental	
  cues	
  

	
  
T	
  cells	
  visit	
  “hotspots”	
  in	
  LN	
  more	
  frequently	
  than	
  

expected	
  by	
  chance	
  	
  

[Fri15,Fri16]	
  



	
  

T	
  cells	
  use	
  mixed	
  movement	
  paTerns	
  in	
  the	
  lung	
  

15	
  min	
  segments	
  



Complexity	
  Emerges	
  from	
  Simple	
  Algorithms	
  	
  
in	
  Complex	
  Environments	
  

T	
  cells	
  interact	
  with	
  
•  Targets	
  
– Dendri*c	
  Cells	
  in	
  LN	
  
– Infected	
  cells	
  in	
  lung	
  

• Chemical	
  Cues	
  
– Chemokines	
  
– Inflamma*on	
  

•  Structural	
  Features	
  
– FRCs	
  in	
  LN	
  
– Vasculature	
  in	
  lung	
  
– hotspots	
  	
  

• Other	
  immune	
  cells	
  

Ants	
  interact	
  with	
  
•  Targets	
  
– seeds	
  
– ephemeral	
  food,	
  prey	
  

• Chemical	
  Cues	
  
– Pheromones	
  	
  
– alarm	
  signals	
  	
  

•  Structural	
  Features	
  
– Habitat	
  

•  Each	
  other	
  
– signaling	
  
– contact	
  rate	
  sensing	
  
– figh*ng	
  



Complexity	
  Emerges	
  from	
  Simple	
  Algorithms	
  	
  
in	
  Complex	
  Environments	
  

•  Simple	
  behaviors	
  
–  movement	
  paTerns	
  balances	
  thoroughness/extent	
  
–  sense	
  signals	
  &	
  density/contact	
  rates	
  
–  recruitment	
  &	
  communica*on	
  
–  memory	
  

•  Environment	
  influences	
  behavior	
  

•  Evolu*onary	
  process	
  evaluates	
  behaviors	
  in	
  environments–	
  
behavior	
  exists	
  in	
  interac*on	
  between	
  agents	
  and	
  environment	
  

•  Robot	
  swarms	
  embed	
  algorithms	
  in	
  the	
  real	
  world,	
  requiring	
  an	
  
ecological	
  perspec*ve	
  

	
  
•  Open	
  ques*ons:	
  

–  What	
  behavioral	
  primi*ves	
  to	
  use?	
  
–  What	
  process	
  for	
  turning	
  rules	
  into	
  strategies?	
  GEswarm?	
  
–  What	
  features	
  of	
  rules	
  generate	
  flexibility?	
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Swarm	
  robots	
  for	
  ISRU:	
  	
  
In	
  Situ	
  Resource	
  U*liza*on	
  or	
  
foraging	
  for	
  resources	
  on	
  Mars	
  

	
  

www.NasaSwarmathon.com	
  
youtu.be/-­‐LKc7jll7IM	
  

github.com/BCLab-­‐UNM	
  
cs.unm.edu/~melaniem	
  

	
  

A	
  challenge	
  to	
  engage	
  students	
  
to	
  develop	
  collec*ve	
  robots	
  to	
  	
  

to	
  revolu*onize	
  space	
  explora*on	
  

•  24	
  teams	
  from	
  MSIs	
  
•  475	
  undergraduates,	
  hundreds	
  of	
  HS	
  students	
  
•  60	
  Robots	
  
•  Compe**on	
  April	
  2016	
  at	
  NASA	
  KSC	
  
•  Virtual	
  compe**on	
  in	
  Gazeebo	
  
•  40	
  teams	
  from	
  MSIs	
  in	
  2017	
  


