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Decentralized Collective Search Strategies

How do effective search strategies emerge from interactions among agents
and between agents and their environment?



Why Flexibility?

o) 11:12/15:29

https://www.ted.com/talks/chris_urmson_how_a_driverless_car_sees_the_road?language=en



Why Swarms?

CoCoRo

Collective Cognitive Robotics project
http://cocoro.uni-graz.at/drupal/
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Why Swarms?

Flexible in multiple environments
Robust to individual failure and error
Scalable to large swarm sizes

-

http://www.wired.com/2013/03/powers-of-

Simple Rules govern interactions among agents & with environment
Efficient & Effective for spatially distributed tasks
Ants: most ecologically successful foragers on earth
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Focus on Collective Foraging

e Search problems are ubiquitous in biology and computer science

e Search for targets distributed in space
— Distributed algorithms on dispersed agents increases search efficiency
— Efficiency of search depends on target distribution
— Requires environmental interaction
— May require retrieval and collection to a central location

* Collective Search in robotics
— Applications: search & rescue, waste clean up, exploration, monitoring
— noise, stochasticity, error
— balance spatial extent vs thoroughness

* explore vs exploit tradeoff



Flexibility in Multiple Environments

T cells in Lymph Nodes vs Lung

. Lymph Node

T-cell Zone

Search for Dendritic Cells in Lymph Node Search for Infection in Lung




Flexibility in Multiple Environments

iverse habitats
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Flexibility in Multiple Environments
Robots collect from different target distributions




Complexity Emerges from Simple Algorithms

in Complex Environments

NG NN
Ants interact with :\j o
* Targets o iy
—seeds
 Chemical Cues
—Pheromones
e Structural Features
—habitat
e Each other ho
—signaling

—contact rate sensing
—fighting



Complexity Emerges from Simple Algorithms

in Complex Environments

Ants interact with

* Targets
—seeds

* Chemical Cues
—Pheromones

e Structural Features
—habitat

* Each other
—signaling
—contact rate sensing
—fighting



Complexity Emerges from Simple Algorithms

in Complex Environments
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Ants interact with

* Targets
—seeds

* Chemical Cues
—Pheromones

e Structural Features
—habitat

* Each other
—signaling
—contact rate sensing
—fighting



Complexity Emerges from Simple Algorithms

in Complex Environments

Ants interact with

* Targets
—seeds

* Chemical Cues
—Pheromones

e Structural Features
—habitat

* Each other
—signaling
—contact rate sensing
—fighting



Scalable, Flexible, Robust Foraging

from a simple repertoire of behaviors

Count Movement
Balances search

thoroughness vs extent
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Central Place Foraging Model

Cumulative seeds collected
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[Flal1, Fla13,Let13]



Foraging success depends on

Interactions among behaviors & environment

Lay pheromone
Whenever | find a seed

Lay pheromone
Only if count > 5

Appropriate communication depends
on what is sensed in the environment



Foraging success depends on

interactions among behaviors & environment

Movement balances the extensiveness and Informed
thoroughness of search SIART, Walk

END

After returning via site fidelity or
following a pheromone trail
Turn often to search thoroughly

START Uninformed
Walk

When searching at random,

. . END
walk straight to search widely

Appropriate movement depends on what
has been communicated & remembered



Central Place Foraging Algorithm (CPFA)

Algorithm 1 Central-Place Foraging Algorithm
1: Disperse from nest to random location
2: while experiment running do

Senselocal | _| Returnto »| Set Search 3:  Conduct uninformed correlated random walk
Resource Density Nest Location if resource found then

4
5 Collect resource

6: Count number of resources ¢ near current location / f
7

8

Sﬁ?ﬁ?gﬂ?d Ra"do,,, Return to nest with resource
g Walk .;/ze Travel to : if Pois(c, A;p) > U(0, 1) then
and collect S— ‘% Search Site 190 . Lay. pheromone to / ¢
IESGRNTE Informed Pre® ) end if
Walk 11: if POIS(c, Agf) > U(0, 1) then
12: Return to / f
13: Conduct informed correlated random walk
14: else if pheromone found then
15: Travel to pheromone location [,
16: Conduct informed correlated random walk
17: else
18: Choose new random location
19: end if
20: end if

21: end while

GA tunes CPFA parameters to specific environments:

Behavioral strategies are evolved from a repertoire of behavioral primitives
[HecSI15]



GA-evolved CPFA

7 CPFA parameters (real-valued, interact)

Parameter Description Initialization Function

Ds Probability of switching to searching U(0,1)

Dy Probability of returning to nest U(O,1)
[0 Uninformed search variation U(0,4r)

Aid Rate of informed search decay exp(5)

Ast Rate of site fidelity U(0,20)

Aip Rate of laying pheromone U(0,20)

X od Rate of pheromone decay exp(10)

Uninformed robots use a Correlated Random Walk: 6 = N(Qt—laﬂ) t
Informed robots use a less correlated CRW: 0 = @ + (47 — w)e ™

lc] 9

Information decisions governed by a Poisson CDF: PoIS(c,A) = et ;L_

- Robots return to location of discovered resource if the =0
count of nearby resources c is large

- Robots can use memory (site fidelity, A = A) or communication
(pheromone-like waypoints, A = A,))
Pheromone waypoints decay exponentially over time: y = e Apdt



GA selects parameters to maximize seeds

collected in fixed time

Each model run requires a set of input parameters [p, p, w, Ay A, Ay Ag)]
Each individual in a colony is identical

Cross over and mutation on parameters
GO: [p, py W, Ay A Ay Al X [Py, Py W, Ajy Ay Agp A ]
G1: [p, p, w, A, A,p,,}tsf, Afp]

100 runs with different parameter sets (colonies) for 100 Generations

Each colony, each generation, evaluated on 8 different target placements for 1
simulated hour

Colonies with highest ‘fitness’ (seeds collected) replicate into next generation

Group Selection Experiments in silico evolve colonies to maximize foraging rate



Complexity Emerges from Simple Algorithms
in Complex Environments

Robots interact with
* Targets
— April Tags
* Virtual Pheromones
— wifi waypoints
e Structural Features
— Tag distribution

e Each other https://youtu.be/Cs6PIINKYH8
— obstacle avoidance
— contact rate sensing

Explore with correlated random walk
Estimate number of resources by rotating 360°
Return via memory or communication
Search thoroughly; gradually give up
Parameters governing movement, memory

& communication tuned in silico by GA




Complexity Emerges from Simple Algorithms

in Complex Environments

Robots interact with
* Targets
— April Tags
* Virtual Pheromones

— error-prone waypoints
over wifi or BT

e Structural Features
— Tag distribution
e Each other

— obstacle avoidance
— contact rate sensing




Experimental Setup

Simulated foraging: Physical foraging:

e 1 (simulated) hour  1hour

 1to 768 robots per swarm * 1, 3, and 6 robots per swarm

e 125x125grid (1323 x 1323) 100 m? arena

e 256 resources (28,672) * 256 QR barcode tags

* Error model emulates sensor noise: e WiFi communication
- 50% detection error * Simulated retrieval via unique tag
- 50-100 cm positional error * Evolved behaviors transferred

* Constitutes fitness function for GA from simulated to physical robots

Clustered Powerlaw-distributed Random



IAnts adapt to their environment

In simulation
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Behaviors evolve that increase foraging rate in each environment

[HecSI15]
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IAnts adapt to their environment

In simulation
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Flexibility: different behaviors
for different target distributions
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* Cluster-adapted swarms use less site fidelity (memory) and more
pheromone (communication) than power-law-adapted swarms
 Random-adapted swarms rarely use either memory or communication



Flexible response to error

I Non-error-adapted
40 + I Error-adapted

Tag detection error: ~50%
Localization error up to 50 cm

Resources collected

Error causes robots in clustered world to lay
more pheromone that evaporates slowly

Physical Simulated

0.06 | | - For partially clustered targets, the opposite

*hx

0.05 For random targets, irrelevant
0.04

0.03

0.02

Pheromone decay rate (A pd)

0.01

Non-error-adapted Error-adapted

[Hec13, HecSI15]



Communication improves foraging

given clustered targets
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Communication improves foraging

given clustered targets
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Adapting movement to sensed resource density

improves search given small clusters
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Value of Communication depends on

information in the environment

e For asingle cluster MK
— pheromones: 8 times better than random 5 :z
search Q st
— site fidelity: 4 times better than random & j
search 2f

— Value of information declines exponentially
with the log of the number of resources

* For many small clusters

— adaptive site fidelity is 4 times better than
random

 Forrandomly distributed resources

— information is useless

[Fla15]



Analytical Model of Random Foraging

Uninformed Instantaneous Foraging Rate
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Analytical Model of Nest Recruitment

Optlmal SCOUt POpulaﬁon (X) 500 Foraging Rate With Recruitment
2k 2+ qg”*
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e Assumptions eliminate interesting

Expected Foraging Rate of n Ants environmental features
o Y 3sl(n — 2)(3 — p) + 2]  Results are sensitive to
dt A4R(3 — p) — optimal scout number
— timing
Value of nest recruitment * |dentifies a decrease in foraging
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[Levi6]



CPFA Extensions

Navi Obstacles

Comparison to Deterministic Search
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Grammatical Evolution to increase CPFA flexibility

N

preconditions
behaviors
actions

If not-holding food & not-on-food
Random walk

If on-food & not-holding-food
Pick-up-hold-food

If holding-food
Return-to-nest

Following GESwarm*, foraging strategies are rule sets in Extended Backus Naur form with

preconditions, behaviors & actions.

A genotype is a string representing a set of rules; GA performs mutation & cross-over.
Rules are instantiated and run in an environment to evaluate fitness (targets collected)

*[Fer15]



Grammatical Evolution to increase CPFA flexibility

* Increased flexibility
* Phylogenetic relationships among successful
strategies
* constraints of evolutionary history?
* Generate new strategies:
* Add behavioral primitives
* Increasing environmental or task complexity

UMY u oire 5 , U 7 , 18,
[u'Food u'Direction.North', 14, 14, 15, 13]
[u'Food", u'Direction.North', u'None', 17, 7, 18, 6]
[u'Food", u'Direction.North', u'None', 16, 20, 17, 19]
[u'Food", u'Direction.North', u'None', 12, 18, 13, 17]
[u'Food', u'Direction.North', u'None', 0, 14, 1, 13]
[u'Food", u'Direction.North', u'None', 13, 2, 14, 1]
[u'Food"', u'Direction.North', u'None', 12, 13, 13, 12]
[u'Food', u'Direction.North', u'None', 3, 13, 4, 12]
[u'Food", , u'Direction.North', u'None', 18, 6, 19, 5]
[u'Food"', u'Direction.North', u'None', 0, 5, 1, 4]
[u'Food", u'Direction.North', u'None', @, 16, 1, 15]
[u'Food"', u'Direction.North', u'None', 6, 20, 7, 19]
[u'Food", u'Direction.North', u'None', 13, 16, 14, 15]
[u'Food"', u'Direction.North', u'None', 3, 5, 4, 4]
[u'Food", Direction.North', u'None', 1, 13, 2, 12]
[u'Food", u'Direction.North', u'None', 19, 19, 20, 18]

u'Direction.North', u'None', 3, 18, 4, 17]

u'Direction.North', u'None', 0, 16, 1, 15]

u'Direction.North', u'None', 16, 20, 17, 19]

u'Direction.North', u'None', 2, 14, 3, 13]

, u'Direction.North', u'None', 6, 15, 7, 14]

[u'SimAgent' u'Direction.North', u'<function pickup_food at @x10056e500>', 11, 11
, 12, 10]
[u'SimAgent' u'Direction. u'<function pickup_food at 0x10056e500>', 8, 8,
9, 7]
[u'SimAgent', 1, u'Direction. u'<function pickup_food at @0x10056e500>', 11, 10
, 12, 9]
[u'SimAgent', 1, u'Direction.North', u'<function pickup_food at @x10056e500>', 11, 11
, 12, 10]
[u'SimAgent', 1, rection.North', u'<function pickup_food at 0x10056e500>"', 9, 11,
10, 10]

Previous Timestep: 1




Complexity Emerges from Simple Algorithms

in Complex Environments

Two-photon imaging:
Movie projection and track animation

T cells interact with

* Targets
—Dendritic Cells in LN
—Infected cells in lung

* Chemical Cues

180

200

€ 220

240

coordinates (um)

—Chemokines - 200
—Inflammation
e Structural Features

00:00:00

_FRCS |n LN 40 60 80 100 120 1 : 60
x-coordinates (um)
—Vasculature in lung

* Each other (?)



Flexibility in Multiple Environments

T cells in Lung vs. Lymph Nodes

\ Lymph Node
How do T cells balance
search thoroughness vs extent?

What changes to produce different
behaviors in different environments?




y-coordinates (um)

Two-photon imaging:
Movie projection and track animation

L1

180
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z-coordinates (um)

Mrass et al., Movie S3

Three-dimensional track animation
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T Cell movement neither Levy nor Brownian Lung & LN

Correlated Random Walk with lognormal step sizes
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T Cell search balances

unique & total contacts with targets
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T cells visit “hotspots” in LN more frequently than
expected by chance

T cells that visit hotspots search more thoroughly than other T cells %

Hypothesis: T cells alter movement in response to environmental cues
[Fri15,Fril16]



T cells use mixed movement patterns in the lung

Representative track OConfined tracks (1h) 0 Straight tracks (1h)
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Complexity Emerges from Simple Algorithms

in Complex Environments

T cells interact with Ants interact with
* Targets * Targets
— Dendritic Cells in LN — seeds
— Infected cells in lung — ephemeral food, prey
* Chemical Cues * Chemical Cues
— Chemokines — Pheromones
— Inflammation —alarm signals
e Structural Features e Structural Features
—FRCs in LN — Habitat
— Vasculature in lung e Each other
— hotspots — signaling
e Other immune cells — contact rate sensing

— fighting



Complexity Emerges from Simple Algorithms

in Complex Environments

* Simple behaviors
— movement patterns balances thoroughness/extent
— sense signals & density/contact rates
— recruitment & communication
— memory

e Environment influences behavior

* Evolutionary process evaluates behaviors in environments—
behavior exists in interaction between agents and environment

 Robot swarms embed algorithms in the real world, requiring an
ecological perspective

* Open questions:
— What behavioral primitives to use?
— What process for turning rules into strategies? GEswarm?
— What features of rules generate flexibility?
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Fayettewlle State - 120 tags
In Championship Round

)

24 teams from MSils

475 undergraduates, hundreds of HS students
60 Robots

Competition April 2016 at NASA KSC

Virtual competition in Gazeebo

40 teams from MSls in 2017

Swarm robots for ISRU:
In Situ Resource Utilization or
foraging for resources on Mars

www.NasaSwarmathon.com
youtu.be/-LKc7jlI7IM
github.com/BCLab-UNM

cs.unm.edu/~melaniem
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