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Motivations Universality

NNs everywhere
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Motivations Universality

Model

Figure : Feed forward neural network

Nodes: neurons
Links: synapses
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Motivations Universality

Model
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Motivations Scalability

Software simulated NN
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Motivations Scalability

Hardware-based NNs

SyNAPSE (DARPA, IBM), Human
Brain Project (SP9 on
neuromorphic), Brains in Silicon at
Stanford...
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Motivations Fault tolerance

How robust is this?

Crash failure: a component stops working.
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Motivations Fault tolerance

How robust is this?

Byzantine failure: a component sends arbitrary values.
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Motivations Fault tolerance

Biological plausibility

Examples of extreme robustness in nature

1

1

Feuillet et al., 2007. Brain of a white-collar worker. Lancet (London, England), 370(9583), p.262.
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Motivations Experimental observations

Classical training leads to non-robust NN

E: di↵erence between desired and actual outputs on a training set
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9 robust weight distribution 7! Reach them with learning !
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Motivations Solution

Dropout

Randomly switch neurons o↵ during the training phase
Kerlirzin and Vallet (1991, 1993), Hinton et al. (2012, 2014)

Minimize E

av

=
P
D

E

D

P(D) where P(D) = (1� p)|D|
p

(N�|D|)

12 / 28



Motivations Lack of theory

Experimentally observed robustness

2

Over-provisionning

Upper-bound ?

2from Kerlirzin 1993, edited
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Problem statement

Given a precision ✏, derive a tight bound on failures to keep
✏-precision for a any neural network3 approximating a function F

3note: learning is taken for granted
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Problem statement

Theoretical background: universality

Theorem4: 8(F , ✏), 9 NN generating F

neu

s.t kF
neu

� Fk < ✏

4Cybenko 1989, Horkink 1991
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Problem statement

Minimal networks are not robust 5

Given over-provision ✏0 (✏0 < ✏), what condition on failures to preserve
✏-precision?

5not to mention: impossible to derive
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Results Single layer, crash

f  ✏� ✏0

w

m

More over-provision 7! more robustness

Unequal weight distribution 7! single point of failure

No Byzantine FT 7! bounded synaptic capacity
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Results General case

Multilayer networks, Byzantine failures

Failure at layer l propagates though layers l 0 > l (Byz and crash).

Factors: weights, |layers|, |neurons|, Lipschitz coef. of '

Total error propagated to the output should be  ✏� ✏0
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Results General case

Multilayer networks, Byzantine failures

Bounded channel capacity (otherwise no robustness to Byzantine)

Propagated error  C
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Results General case

How to read the formula
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Results General case

How to read the formula
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worst-case propagated error
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Results General case

How to read the formula
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error margin permitted by the over-provision
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Results General case

How to read the formula
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Results General case

Unbounded capacity

Taking C 7! 1
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No Byzantine FT.
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Results Applications

Generalization to synaptic failures.

Applications of the bound (Memory cost, neuron duplication,
synchrony)

Other neural computing models.
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Questions ?

More details: https://infoscience.epfl.ch/record/217561
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