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NNs everywhere

Motivations

Universality
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Motivations Universality

Model

Figure : Feed forward neural network

Nodes: neurons
Links: synapses



Motivations Universality
Model
N
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Motivations Scalability
Hardware-based NNs

multicore

Interest over time

SyNAPSE (DARPA, IBM), Human
Brain Project (SP9 on
p— ‘ neuromorphic), Brains in Silicon at
Stanford...
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Motivations Fault tolerance
How robust is this?

Crash failure: a component stops working.
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Motivations Fault tolerance
How robust is this?

Byzantine failure: a component sends arbitrary values.
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© Motivations Fault tolerance

Biological plausibility

A man who lives without 90% of his brain is
challenging our concept of 'consciousness'

The father of two lives a normal life. 1

1Feui|let et al., 2007. Brain of a white-collar worker. Lancet (London, England), 370(9583), p.262.
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Motivations Experimental observations
Classical training leads to non-robust NN

E: difference between desired and actual outputs on a training set

3 robust weight distribution — Reach them with learning !
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Motivations Solution
Dropout

Randomly switch neurons off during the training phase
Kerlirzin and Vallet (1991, 1993), Hinton et al. (2012, 2014)
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Minimize E;, = > EDP(D) where P(D) = (1 — p)|D\p(N—\D|)
D
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Motivations Lack of theory
Experimentally observed robustness

generalisation rate
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@ Over-provisionning

@ Upper-bound ?

2from Kerlirzin 1993, edited
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Problem statement

Given a precision ¢, derive a tight bound on failures to keep
e-precision for a any neural network® approximating a function F

3note: learning is taken for granted
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Problem statement
Theoretical background: universality

Theorem®*: V(F,€), 3 NN generating Fpey St ||Freu — Fl| < €

(1) (2)
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“Cybenko 1989, Horkink 1991
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Problem statement

@ Minimal networks are not robust °

@ Given over-provision ¢ (€’ < €), what condition on failures to preserve
e-precision?

5hot to mention: impossible to derive
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Results  Single layer, crash

@ More over-provision — more robustness
@ Unequal weight distribution — single point of failure

@ No Byzantine FT +— bounded synaptic capacity
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Results  General case
Multilayer networks, Byzantine failures

Neuron_output
1

Ko
wyy

B T
Weighted_sum

e Failure at layer / propagates though layers I’ > | (Byz and crash).
e Factors: weights, |layers|, |neurons|, Lipschitz coef. of ¢

@ Total error propagated to the output should be < ¢ — ¢
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Results General case
Multilayer networks, Byzantine failures

@ Bounded channel capacity (otherwise no robustness to Byzantine)

L L ,
e Propagated error < C ) f,KL_’W,(nLH) IT (N — f,/)w,(,f)
I=1 I'=I+1
C: capacity, K: Lipschitz coeff., W,(,{) maximal weight to layer /

Nj: |neurons|, f;: [failures|
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L L
CZ (f/KL_'W:SwLH) H (Ny — ﬁ/)wr(rf/)) <e—¢

Ir=I+1

22/28



Results General case
How to read the formula

L L
CZ (f/KLIW,(nLJrl) H (N// — Ic//)W,(,:/)) S € — GI

Ir=I+1

worst-case propagated error
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Results General case
How to read the formula

L L
c> (f/KLIWr(nLH) IT (v - f//)w,(,f/)> <e—¢

=1 I'=1+1

error margin permitted by the over-provision
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Results General case
How to read the formula

CZ( KL / L+1) H /’_ﬁ’ (//)> SE—E/

I'=1+1
Error (at most C is transmitted) at f; neurons in layer | propagating
through /' > 1.
(N — fir) = only correct neurons propagating it, multiplying by KW,(,£ ),
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Results General case
Unbounded capacity

Taking C — o0
L L ,
cy (ﬂKL_IW,(T,L+1) IT (v - f,/)W,(,f)> <e—é
I=1 I'=I+1
Then ¥/ [ fi =0

No Byzantine FT.
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Results Applications

“11 “11

)]

@ Generalization to synaptic failures.

@ Applications of the bound (Memory cost, neuron duplication,
synchrony)

@ Other neural computing models.
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More details: https://infoscience.epfl.ch/record/217561
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