
TEMPLATE DESIGN © 2007

www.PosterPresentations.com

Compaction and Expansion in Self-Organizing Particle Systems

Joshua J. Daymude1, Miles Laff1, Zahra Derakhshandeh1, Robert Gmyr2, Alexandra Porter1, Andréa W. Richa1

1 Computer Science, CIDSE, Arizona State University, U.S.A.
2 Computer Science, University of Paderborn, Germany

Introduction

Amoebot Model

The Compaction Algorithm The Expansion Algorithm

References

Conclusion

In the development of programmable matter, researchers

are tasked with developing synthetic materials that can

change their physical properties based on predefined rules

and continuous, autonomous collection of input. Often,

such programmable matter is highly specific, tailored

toward a particular use. In this research, however, we

approach this problem from the perspective of theoretical

computer science by modeling matter as a system of

particles that can perform computations, bond with other

particles, and move. Using this geometric “amoebot” model

[1], we discuss solutions to the compaction problem—

wherein particles form a convex structure containing no

holes—and the expansion problem—wherein particles

form a ring to enclose spaces.

1. Zahra Derakhshandeh, Shlomi Dolev, Robert Gmyr, Andréa W. Richa,

Christian Scheideler, and Thim Strothmann. Brief announcement: amoebot -

a new model for programmable matter. In 26th ACM Symposium on

Parallelism in Algorithms and Architectures (SPAA ’14), pages 220–222.

ACM, 2014.

2. Zahra Derakhshandeh, Robert Gmyr, Thim Strothmann, Rida A. Bazzi,

Andréa W. Richa, and Christian Scheideler. Leader election and shape

formation with self-organizing programmable matter. 2015. To appear, CoRR

abs/1503.07991.

3. Miles Laff. Expansion algorithms in self-organizing particle systems. Honors

Bachelor’s thesis, Barrett Honors College, Arizona State University, 2015.

General Assumptions: standard asynchronous model

and “compass-free”, i.e. there is no global sense of

orientation shared amongst the system.

Space: an infinite, undirected graph G = (V, E) in the form

of an equilateral triangular grid (Figure 1a) in which V is the

set of all possible particle positions and E is the set of all

possible transitions between positions in V [1, 2].

Particles: constant-size memory, strictly local sense of

orientation, and no unique identifiers. Can be either

contracted or expanded (Figure 1b). Can form bonds with

their neighbors which contain shared, bounded-memory

registers used for particle communication.

Figure 1a Figure 1b

Movement: achieved via a series of particle expansions

and contractions.

 Independent: a contracted particle may expand into an

adjacent unoccupied node to become expanded, and

completes its movement by contracting to once again

occupy only one node.

 Coordinated: particles coordinate movements in the

form of handovers, in which two scenarios are possible:

(1) a contracted particle can expand and “push" a

neighboring expanded particle, forcing it to contract, or

(2) an expanded particle can contract and “pull" a

neighboring contracted particle, forcing it to expand.

Mimics amoeba movement, and avoids severing the

particle system’s connectivity [1, 2].

A particle is said to be locally compact if (1) it does not

have exactly five neighbors, and (2) all its neighboring

particles occupy consecutive positions. We assume the

existence of a single “seed” particle (green) and that the

particle system is initially connected. All other particles are

initially inactive and without orientation (Figure 2a).

Phase 1: Orientation. Direction is propagated throughout

the system by means of spanning trees (Figure 2b).

Figure 2a Figure 2b

Phase 2: Movement

 Type 1: Movement Chains. If a particle is a parent in

its spanning tree and is non-locally compact, it attempts

to fix this concavity by moving into an empty position in

its neighborhood, becoming a “leader” (Figures 2b &

3a). Its child takes its original place and orientation,

becoming a “follower” (Figure 3b). Finally, the rest of the

spanning tree follows this chain along its original

orientation using handovers (Figures 3c & 3d).

Figure 3a Figure 3b

Figure 3dFigure 3c

 Type 2: Leaf Switching. A hole bounded entirely by

leaves of the system’s spanning trees will never be filled

by movement chains, as leaves never become leaders.

Thus, a leaf not taking part in a movement chain may

randomly choose a new parent from its neighbors,

guaranteeing the eventual elimination of any hole.

When a particle system wishes to surround an area or

structure, a natural movement to perform is to spread out

over as large an area as possible; i.e. form a spherical

shell. In two dimensions, a particle system is said to be

expanded if it forms a ring [3], that is, the 2-connected

structure with the smallest number of edges. Assumptions

of initial connectivity and the existence of a seed hold as in

the compaction algorithm.

Phase 1: Seed Surrounding. By surrounding the seed, an

initial ring configuration is established.

Phase 2: Line Formation. Once the seed is surrounded,

one of its neighbors points opposite the seed to begin the

line. When another particle moves into the position incident

to this point, it stops moving and likewise points in the

direction opposite the seed. Thus, a line (Figure 5,

depicted in yellow) grows outwards from the seed.

Phase 3: Line Collapsing. The previously formed line

collapses to either side of itself to form the sides of the

ring. Each complete collapsing movement increases the

area of the ring by one, and these movements continue

until the line is exhausted, completing the ring.

Figure 5

The general amoebot model provides simple, robust

means of describing programmable matter. By abstracting

above physical implementation, the algorithms provided for

compaction and expansion are more widely applicable in

different physical systems. The proposed compaction

algorithms explore different ways of balancing the tension

between algorithm efficiency and shape of the final

structure; similarly, future approaches to expansion must

also attempt to achieve more optimally expanded

structures without sacrificing runtime.

Hole Elimination Algorithms

Hexagon Shape Formation

Performance Comparisons

If one is willing to weaken the definition of compaction by

foregoing the requirement of a convex shape, algorithms

can focus solely on hole elimination. We propose two

similar algorithms for hole elimination: standard and

compaction-based. While the two algorithms differ in how

particles attempt to gather together, they share the

following local rules for when a particle may finish:

(1) a particle may finish if it occupies a position which lies

radially outward from the seed; otherwise,

(2) a particle may finish if it has three consecutive finished

particles in its neighborhood.

Hole Elimination Algorithms (cont.)

Phase 1: Orientation. Direction is propagated throughout

the system just as it is for the compaction algorithm.

Phase 2: Gathering. Members of spanning trees attempt

to get closer to their root.

 Standard. In the standard hole elimination algorithm,

members of spanning trees are only allowed to move by

performing handovers with their parent in the tree,

essentially following a fixed path defined by the tree’s

structure.

 Compaction-Based. In the compaction-based version,

members of spanning trees behave as they do in the

compaction algorithm’s “Movement” phase.

Phase 3: Border Walking. A particle comes into contact

with some finished particle and proceeds to walk

counterclockwise around the finished border until

discovering a position where it also may become finished.

Our particle systems support another class of algorithms

which achieve “shape formation” of various kinds. In the

case of hexagon shape formation, the particle system

assembles a structure that is as close to a sphere as

possible and contains no holes; thus, it is (nearly) compact.

This is achieved using a “snake-like” approach similar to

the border walking found in standard hole elimination.

We were interested in comparing the different compaction

and hole elimination algorithms against one another. In

theory, we’ve shown that both standard hole elimination

and hexagon shape formation require Θ(n2) work, as does

compaction-based hole elimination on expectation.

Furthermore, since the hole elimination algorithms provide

more opportunities for particles to finish, we expected them

to terminate in less movements. However, as Figure 4

shows, hexagon shape formation (blue) consistently

outperforms both hole elimination algorithms (orange and

green) when run on the same initial configurations.

Figure 4


