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The engineering of large-scale decentralised systems requires sound methodologies to guarantee the
attainment of the desired macroscopic system-level behaviour given the microscopic individual-level imple-
mentation. While a general-purpose methodology is currently out of reach, specific solutions can be given to
broad classes of problems by means of well-conceived design patterns, which recall the well-known concept
exploited in software engineering [1]. Design patterns provide formal guidelines to deal with recurring prob-
lems in a specific domain. For the particular case of distributed systems, design patterns should prescribe the
individual-level microscopic behaviour required to obtain desired system-level macroscopic properties [2, 3].

Here, we present a design pattern for decentralised decision-making—a fundamental ability in several
contexts and application domains [4, 5, 6]. The design pattern is based on the nest-site selection behaviour
of honeybee swarms [7, 8, 9]. Previous experimental and theoretical studies have demonstrated near-optimal
speed-accuracy tradeoffs in the selection of the most profitable option among a set of alternative nesting sites
by honeybees [7, 8]. Most importantly, inhibitory signals among bees provide an adaptive mechanism to
quickly break deadlocks and tune the decision dynamics according to the perceived quality of the discovered
options [8, 9]. The above properties of the nest-site selection process are relevant for many practical decision-
making scenarios in decentralised systems.

Starting from the macroscopic description of the nest-site selection dynamics [8, 9], we derive the exact
relationship between microscopic and macroscopic models—also including finite-size effects—for the general
case of a best-of-n decision problem. The inter-related models represent the core of the design pattern, which
is completed by formal guidelines for the implementation of collective decisions in multiagent systems. We
provide guidelines for implementation by means of either homogenous or heterogeneous agents, as well
as guidelines for the inclusion of spatial and topological factors that have a bearing in determining the
microscopic interaction patterns. We report here a case study that illustrates the application of the design
pattern, and we briefly discuss the results obtained in other case studies, as well as the relevance of the
obtained results for better understanding the behaviour of natural systems.

Models We consider a best-of-n decision problem, that is, the choice of the best option, or any of the
equal-best options, among n different alternatives. Each option i ∈ {1, . . . , n} is characterised by its quality
vi ∈ [vm, vM ]. We study decision making for a population of N agents, where each agent is either committed
to one of the available options i (sub-population size Ni and fraction Ψi = Ni/N) or is uncommitted (sub-
population size NU and fraction ΨU ). At the macroscopic level, a decision is taken as soon as the entire
population or a large fraction Ψq (hereafter referred to as quorum) is committed to a single option.

According to the model proposed for honeybee nest-site selection [8], four concurrent processes determine
the distribution of agents across populations: (i) uncommitted agents spontaneously discover option i at rate
γi (ii) agents committed to option i spontaneously abandon commitment at rate αi; (iii) agents committed
to option i recruit uncommitted agents at rate ρi; and (iv) agents committed to option j 6= i inhibit
agents committed to option i at rate σj . The mean-field macroscopic dynamics are well described by an
n-dimensional ODE system, which extends the binary version discussed in [8, 9]:{

Ψ̇i = γiΨU − αiΨi + ρiΨiΨU −
∑

j 6=i σjΨiΨj

ΨU = 1−
∑

i Ψi
, i ∈ {1, . . . , n} (1)

The transition rates (γi, αi, ρi and σi) are functions of the quality vi:

αi = fα(vi), γi = fγ(vi), ρi = fρ(vi), σi = fσ(vi). (2)

The relations between option quality and transition rates determine the macroscopic dynamics [9].
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The microscopic behaviour of the average agent is represented by the probabilistic finite state machine
(PFSM) shown in Fig. 1(a). It describes the commitment dynamics of a single agent in interaction with
agents belonging to different sub-populations. An agent can be either uncommitted (state CU ) or com-
mitted to option i (state Ci), and changes state every τ seconds according to two types of transitions:
spontaneous and interactive. Spontaneous transitions model discovery of the option i with probability
Pγ(vi) and abandonment of commitment to option i with probability Pα(vi). Interactive transitions model
the recruitment and cross-inhibition processes resulting from the interaction between agents belonging to
different populations. We refer to the probability of any agent interacting with an agent committed to option
i as PΨi . We assume a well-mixed system, so that PΨi = Ni/N . Recruitment for option i is modelled by
a transition from CU to Ci with overall probability PΨiPρ(vi). Cross-inhibition of an agent committed to
option i is instead modelled as the cumulative effect of the interaction with agents committed to a different
option, with overall probability

∑
j 6=i PΨjPσ(vj).

Implementation guidelines The actual implementation of the agent behaviour requires choosing the way
in which transitions are executed in relation to the limited information available to the individual agent.
For instance, the estimation of the population-size dependent probability PΨi by individual agents requires
some sampling of the current population size. The other transition probabilities (Pλ(vi), λ ∈ {γ, α, ρ, σ})
should instead provide an exact relationship with the macroscopic transition rates to obtain the desired
dynamics determined by Eq. (2).

We propose two strategies based either on a homogeneous or on a heterogeneous implementation. In
the homogeneous case, all agents compute their transition probabilities in the same way as a function of
the estimated quality v̂i. In this case, it is possible to establish a direct correspondence between micro and
macro parameters:

Pλ,g(v̂i) = λiτ = fλ(v̂i)τ,
i∈ {1, . . . , n}
λ∈ {γ, α, ρ, σ} (3)

where Pλ,g represents the actual probability for the agent ag to undergo the transition λ. In the heterogeneous
case, agents compute their own transition probabilities differently from each other. We propose a simple
response threshold scheme, so that agent ag follows a transition with a fixed probability if the (estimated)
option quality v̂i exceeds a given threshold δg:

Pλ,g(v̂i) =

{
Pλ↑ v̂i > δg
Pλ↓ v̂i ≤ δg

,
i∈ {1, . . . , n}
λ∈ {γ, α, ρ, σ} (4)

where Pλ↑ and Pλ↓ are tuneable parameters, and the value δg is drawn for each agent ag from a probability
distribution Dλ over the range [vm, vM ]. With this implementation, it is possible to establish a relationship
between microscopic and macroscopic parameters through the cumulative distribution function FDλ of Dλ:

FDλ =
λτ − Pλ↓
Pλ↑ − Pλ↓

, λ ∈ {γ, α, ρ, σ} (5)

For both homogeneous and heterogeneous strategies, the derivation of the relationship between micro-
scopic and macroscopic description levels passes through the introduction of the master equation of the
finite-size macroscopic model.

In a practical application scenario, agents might not be able to interact with neighbours every τ seconds.
For instance, an agent might be busy estimating the quality of a discovered option, or spatial/topological
factors might prevent frequent interactions. Agents unable to interact are latent, as opposed to interactive
ones. We model changes in this activity state (i.e., the activity dynamics) by considering that an agent
becomes latent with probability PL, and returns interactive with probability PI . In these conditions, a
fraction of ηI = PI/(PI + PL) agents can be found asymptotically in the interactive state. Depending
on the microscopic implementation, it is possible to derive the correspondence between micro and macro
parameters by dividing the macroscopic transition rates by ηI or ηL.

Case study We illustrate the implementation of decentralised decision-making for a multiagent system
in which each agent can potentially interact with any other agent. We focus on the general case of value-
sensitive decision-making as described in [9]. We consider a quality range v ∈ [1, 10], we fix the quorum for
the collective decision to Ψq = 0.8 and we limit the total execution time to T = 40 s. Following [9], discovery

2



CU

Ci

Pγi
PΨi

Pρi Pαi

∑
j 6=i PΨj

Pσj

(a)

vA

v
B

Convergence time

S
uccess rate

C
2 4 6 8 10

2

4

6

8

10
N= 10
N= 50
N= 100
N= 500
N= 1000

(b) (c)

2 4 6 8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

vi, i ≠ A

Ψ
A

1 3 5 7 9

ODEs
Gillespie
Multi−agent
 
n = 2
n = 3
n = 4
n = 5

(d)

Figure 1: (a) Probabilistic Finite State Machine (PFSM) describing the microscopic behaviour of an agent in average.
Spontaneous transitions are represented by bold lines, interactive transitions by dashed lines. (b) Comparison between
the stochastic finite-size macroscopic model (black lines) and the multiagent implementation with both the homoge-
neous strategy (red lines) and the heterogenous strategy (green lines). Results are displayed for varying system size
N . For each possible configuration (vA, vB), 500 independent runs are performed. In the bottom-right half of the plot,
we show the isolines for the success rate at the value S = 0.9, and the gray triangle indicates quality value pairs below
the target resolution R = |vA − vB |/max(vA, vB) = 0.15. In the top-left half we show for symmetric quality pairs
(vB , vA) the isolines for convergence time at the value C = 1 s. (c) Scaling of the convergence time C with the system
size N . For each configuration (vA, vB)—and the symmetric case (vB , vA)—we fitted the curve C = bNa and we show
the heat-map for the fitted coefficient a (bottom-right) and b (top-left) across the decision space. (d) Micro-macro
link with varying number of options. We compare the macroscopic dynamics predicted by the mean-filed model (1),
the finite-size macroscopic dynamics approximated by the Gillespie algorithm and the microscopic dynamics resulting
from homogeneous multiagent simulations (N = 500 agents). The plot shows the fraction of the population committed
to option A at the end of the simulation, plotted against the lower option quality vi. Boxes represent the inter-quartile
range of the data (2000 runs), while the horizontal lines inside the boxes mark the median values. The whiskers extend
to the most extreme data points within 1.5 times the inter-quartile range. Outliers are not shown.

and recruitment rates are assumed to be linearly proportional to the option quality vi (i.e., γi = ρi = vi),
the abandonment rate is inversely proportional to quality (i.e., αi = 1/vi), while the cross-inhibition rate
is constant (σi = σ̄), which we fix to σ̄ = 10. Given the macroscopic parameterisation, we analyse the
finite-size effects produced by the system size N by approximating the macroscopic dynamics using the
Gillespie algorithm [10]. Then, we design the multiagent system following both the homogeneous and the
heterogeneous strategies mentioned above.

We first focus on a binary decision problem, in which the available options are referred to as A and B,
and their quality as vA and vB. Figure 1(b) shows the match between the macroscopic Gillespie simula-
tions and the multiagent implementation with both the homogeneous and the heterogeneous strategy, for
varying system size N . The correspondence between macroscopic model and microscopic implementation is
remarkable. The results show that the studied parameterisation allows to reliably take decisions for above-
resolution decision problems already with N = 100, as indicated by the success rate S in the bottom-right
part of Fig. 1(b). Conversely, the convergence time C is very similar across different system sizes. We
analysed the scaling behaviour of the convergence time and found adherence with a power law behaviour
C = bNa (see Fig. 1(c)). With the proposed parameterisation, C becomes nearly independent of the system
size N in large parts of the problem space. Finally, we studied the micro-macro link in a best-of-n scenario.
We fix the best option (A) to the maximum quality vA = 1, and all other options to the same, lower quality
vi. The results presented in Fig. 1(d) reveal a very good correspondence between multiagent and Gillespie
simulations, therefore validating the methodology beyond the binary decision problems presented above.

Discussion The design pattern methodology we propose provides a complete framework that allows to
move from the choice of the macroscopic parameterisation down to the implementation of the individual
behaviour. Each step is supported by the principled understanding of the causal relationship between
microscopic choices and macroscopic effects. We have substantiated the methodology with other case studies
beyond the one presented here. In particular, we studied the micro-macro link for a problem of resource
discovery and exploitation. In this case study, mobile agents have to recognise and collectively select the best
option among several available. The spatial factors have a bearing on the interaction between agents, so that
particular care must be given to the implementation. The design pattern provides guidelines also for such
case, thanks to the inclusion of latent states for individual agents that allows to preserve the micro-macro
link also when interactions are sporadic or when spatiality interferes with the well-mixed assumption.
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Besides engineering, our results can be relevant for better understanding the behaviour of natural sys-
tems, by providing testable hypotheses to be verified by field experiments. The heterogeneous implementa-
tion strategy represents one such case. The choice of response thresholds is supported by the large literature
on inter-individual variability in social insects [11]. Recent studies have recognised the importance of includ-
ing individual differences in behaviour to better understand the dynamics of collective behaviours [12, 13].
Here, we have highlighted the relationship between the distribution of individual thresholds and the col-
lective response function, so that macroscopic predictions could be matched against estimates of the real
threshold distribution [14]. Response thresholds well adhere with adaptive mechanisms for threshold adap-
tation, allowing to finely tune the macroscopic response to match the statistical regularities that characterise
the task. This adaptivity can result from evolutionary factors as well as from development and learning [11].
Integrating adaptive mechanisms in the microscopic implementation could lead to improved performance,
and represents a natural extension for the proposed design pattern.
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