A purely local, distributed, simple learning scheme achieves near-optimal capacity in recurrent neural networks without explicit supervision

Alireza Alemi, Carlo Baldassi, Nicolas Brunel, Riccardo Zecchina

BDA 2015

— HUMAN GENETICS FOUNDATION · TORINO —

Attractor networks

- Popular model for information storage in the brain (memorization – working memory, recognition, errorcorrection, ...)
- Recurrent neural networks
- Distributed model (each unit behaves independently, information is stored in the collective behaviour)
- Learning → patterns of activity are encoded as fixed points of the network dynamics
- Robustness → basins of attraction around the fixed points

Hopfield network

- First, most popular model (1984), with many later variants
- Binary ±1 units and patterns (perceptrons \rightarrow output $_{j} = sign(\sum_{i} W_{ji} \xi_{i})$)
- Hebbian learning ("fire together \rightarrow wire together, out-of-sync \rightarrow fail to link")

- Rule:
$$W_{ij} = \frac{1}{M} \sum_{a} \xi_{j}^{a} \xi_{i}^{a}$$

- **Pros**: simple, local, distributed, unsupervised, some experimental support
- Cons: symmetric, low capacity (~0.138N), catastrophic forgetting beyond capacity

Perceptron learning rule (PLR)

- On line, supervised learning rule for training individual units:
 - 1. Present a pattern at random: ξ^{a}
 - 2. In case of error, change W_{ji} in the opposite direction, modulated by ξ^{a}

$$\Delta W_{ji} = \eta \xi_i^a \left(\xi_j^a - sign \left(\sum_i W_{ji} \xi_i^a \right) \right)$$

- Pros: able to achieve the maximal capacity (~2N) (even with correlated patterns), no catastrophic forgetting, allows asymmetric weights
- **Cons**: requires an explicit supervisory error signal
 - i.e. compare "output in absence of the pattern" vs "pattern itself"

Best of both worlds?

- Goal: get the best of both worlds, a distributed, local, simple, unsupervised rule which achieves maximal capacity, allows asymmetric weights, has no catastrophic forgetting – in a more realistic setting
- Means: convert the PLR in an unsupervised setting, using statistical properties of the inputs
- Main observation: the statistic of the depolarization fields carries enough information about the error type → no need for an explicit error signal

Our network model

 Network model: excitatory population, state-dependent inhibitory feedback for stabilization, patterns presented via external inputs

A three-threshold learning rule (3TLR)

- Converting the PLR into an **unsupervised** rule: 3TLR
- Crucial observation: depolarizations $\sum_{i} W_{ji} s_{i}$ are distributed according to a Gaussian of width $O(\sqrt{N})$; external inputs x_{j} make them bimodal

3TLR in action

Simulation results

- Many-fold increase in capacity w.r.t. Hopfield network, even though the theoretical capacity is lower
- Works in sparse regime, with correlated patterns etc.
- Depends on the external inputs being strong enough (although...)
- After learning, many synapses are off ("silent") \rightarrow sparsification

Further comments, future directions

- Parameter tuning → unsupervised pre-training phase (learn the general statistics of the inputs)
- 3TLR can be framed within the BCM theory (with additional specifications)
- Experimental evidence?
- The transformation could be applied to (essentially) any supervised rule (e.g. discrete synapses)
- Future direction: more realistic neurons (firing-rate, integrate and fire, HH) and general scenario

Thanks!

see details in (to be published soon):

A Three-Threshold Learning Rule Approaches the Maximal Capacity of Recurrent Neural Networks, A. Alemi, C. Baldassi, N. Brunel and R. Zecchina, Plos. Comp. Biol. 2015

Alireza Alemi

Riccardo Zecchina

Nicolas Brunel

Correlated patterns

Distribution of synaptic weights

External field strength

Weights symmetry

