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Attractor networks

● Popular model for information 

storage in the brain (memorization – 

working memory, recognition, error-

correction, ...)

● Recurrent neural networks

● Distributed model (each unit behaves 

independently, information is stored 

in the collective behaviour)

● Learning → patterns of activity are 

encoded as fixed points of the 

network dynamics

● Robustness → basins of attraction 

around the fixed points



  

Hopfield network

● First, most popular model (1984), with many later variants

● Binary ±1 units and patterns (perceptrons →                                           )

● Hebbian learning (“fire together → wire together, out-of-sync → fail to link”)

– Rule:

● Pros: simple, local, distributed, unsupervised, some experimental support

● Cons: symmetric, low capacity (~0.138N), catastrophic forgetting beyond capacity
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Perceptron learning rule (PLR)

● On line, supervised learning rule for training individual units:

1. Present a pattern at random: 

2. In case of error, change        in the opposite direction, modulated by 
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● Pros: able to achieve the maximal capacity (~2N) (even with correlated patterns), 
no catastrophic forgetting, allows asymmetric weights

● Cons: requires an explicit supervisory error signal

– i.e. compare “output in absence of the pattern” vs “pattern itself”



  

Best of both worlds?

● Goal: get the best of both worlds, a distributed, local, simple, unsupervised rule which 

achieves maximal capacity, allows asymmetric weights, has no catastrophic 

forgetting – in a more realistic setting

● Means: convert the PLR in an unsupervised setting, using statistical properties of the 

inputs

● Main observation: the statistic of the depolarization fields carries enough information 

about the error type → no need for an explicit error signal



  

Our network model

● Network model: excitatory population, state-dependent inhibitory feedback for 
stabilization, patterns presented via external inputs
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A three-threshold learning rule (3TLR)

● Converting the PLR into an unsupervised rule: 3TLR

● Crucial observation: depolarizations                 are distributed according to a 

Gaussian of width              ; external inputs      make them bimodal
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3TLR in action



  

Simulation results

● Many-fold increase in capacity w.r.t. Hopfield network, even though the theoretical 
capacity is lower

● Works in sparse regime, with correlated patterns etc.

● Depends on the external inputs being strong enough (although...)

● After learning, many synapses are off (“silent”) → sparsification



  

Further comments, future directions

● Parameter tuning → unsupervised pre-training phase (learn the general statistics of 
the inputs)

● 3TLR can be framed within the BCM theory (with additional specifications)

● Experimental evidence?

● The transformation could be applied to (essentially) any supervised rule (e.g. discrete 
synapses)

● Future direction: more realistic neurons (firing-rate, integrate and fire, HH) and 
general scenario



  

Thanks!
see details in (to be published soon): 

A Three-Threshold Learning Rule Approaches the Maximal Capacity of Recurrent Neural 
Networks, A. Alemi, C. Baldassi, N. Brunel and R. Zecchina, Plos. Comp. Biol. 2015

Alireza Alemi Riccardo Zecchina Nicolas Brunel



  

Sparse case



  

Correlated patterns



  

3TLR vs PRL



  

Distribution of synaptic weights



  

External field strength



  

Weights symmetry
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