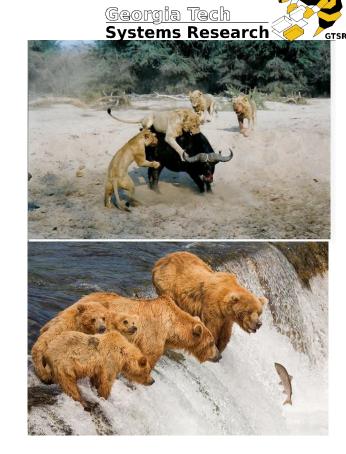


Bio-Inspired Source Seeking Using Dynamic Collaboration

Ayesha Khan – Georgia Tech

Fumin Zhang – Georgia Tech



Outline

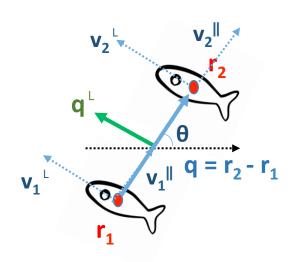
- Motivation
- Problem Formulation
- Algorithm
- Simulation
- Next steps

Why Bio-inspired?

- Animals search for targets:
 - Without any localization service
 - Without any infrastructure for high data rate communication
 - Information exchange is random and asynchronous
 - Uncertainties in the environment

Our Goal:

Get inspiration from such behavior and find scalable algorithms that balance adaptiveness and robustness for engineering systems

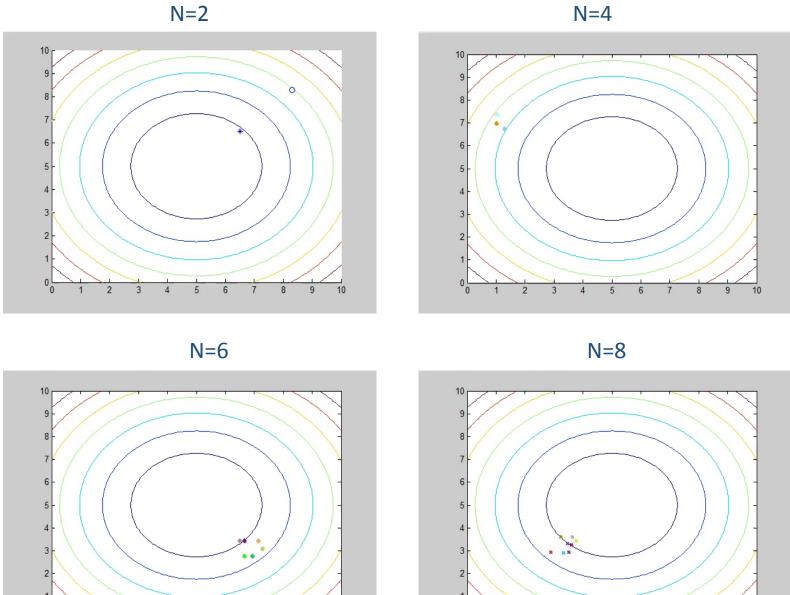


Source Seeking Model (SSM)

Inspired by fish behavior, this model develops a source-seeking algorithm for a
group of agents with no explicit gradient estimation of a scalar field.

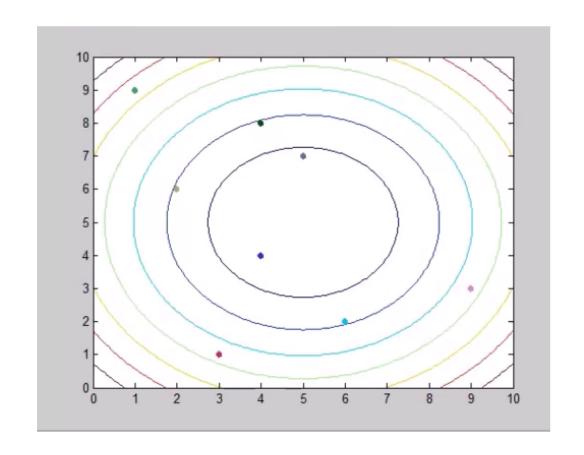
$$\mathbf{v}_{i}^{\parallel} = k_{p} \sum_{j \in N_{i}} ((\mathbf{r}_{j} - \mathbf{r}_{i}).\mathbf{q} - a_{j,i}^{0}) \begin{pmatrix} \cos \theta \\ \sin \theta \end{pmatrix}$$

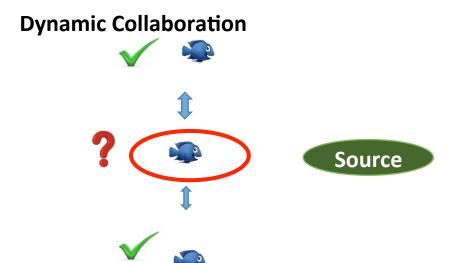
$$\mathbf{v}_i^{\perp} = (kz(\mathbf{r}_i) + C) \begin{pmatrix} -sin\theta \\ cos\theta \end{pmatrix}$$



N=2 case where $r_1, r_2 \in \mathbb{R}^2$

W. Wu, I. D. Couzin, and Fumin Zhang, "Bio-inspired Source Seeking with no Explicit Gradient Estimation" in *Proc. 3rd IFAC Workshop on Distributed Estimation and Control in Networked Systems(NecSys'12)*, 240-245, 2012.


Simulation – Single source/minimum at (5,5)



What just happened?

Limitations of the SSM Model

Behavior of a single agent

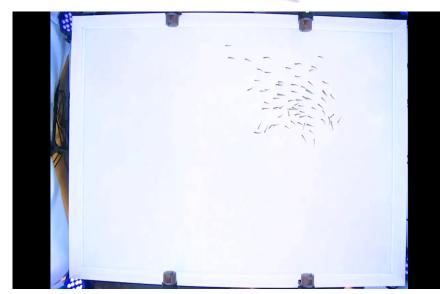
Multiple sources effect

Beyond the workspace or away from the source

• We try to **extend the SSM model** to overcome its limitations to achieve the following:

Our Objective

Devise an optimization algorithm in which individuals are able to explore sources at multiple sites by using a collaborated approach while remaining confined inside the region of interest


Random signaling among fish

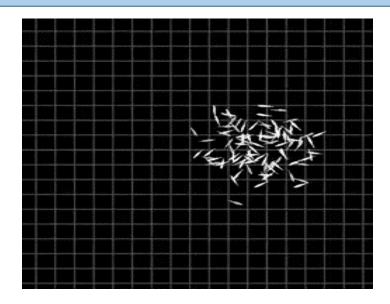
 The model in this paper finds conditional probabilities for the impact of a single fish behavior on others using inter-fish distances and ranked angular areas.

$$P(i|j) = (1 + exp(-\beta_1 - \beta_2 L_D - \beta_3 A_R))^{-1}$$

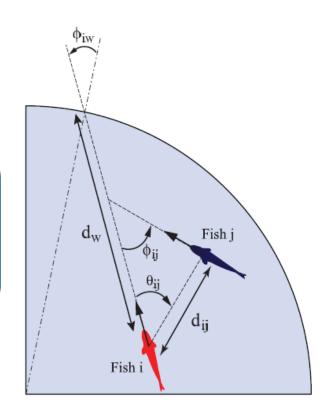
where,

- P(i|j) is the probability that fish i will exhibit behavioral change given that fish j is already startled
- L_D is log of the metric distance between fish j and fish i
- A_R is the ranked angular area of fish j subtended on the eye of fish i

S. Brin, C. R. Twomey, A. T. Hartnett, H. Shan, and I. D. Couzin, "Revealing the hidden networks of interaction in mobile animal groups allows prediction of complex behavioral contagion," *Proc. Natl. Acad. Sci.*, vol. 112, no. 15, p. 201420068, 2015.



Strolling Motion


• Each agent has a constant speed but its steering control is given by the following equations:

$$dw_i(t) = -v\left[\frac{dt}{\xi}(w_i(t) - w_i^*(t)) - \hat{\sigma}dW\right] \tag{1}$$

$$w_i^*(t) = \hat{k}_W \frac{sgn(\phi_{iW})}{\tau_{iW}} + \frac{1}{N_i} \sum_{j \in V_i} (k_p d_{ij} sin\theta_{ij} + \hat{k}_v v sin\phi_{ij})$$
 (2)

Gautrais J, Ginelli F, Fournier R, Blanco S, Soria M, Et al. (2012) Deciphering Interactions In Moving Animal Groups. *PLoS Comput Biol* 8(9): e1002678.

Dynamic Teaming

Our idea is to modify the formation control law in SSM:

$$v_i^{\parallel} = k_p \sum_{j \in N_i} ((\mathbf{r}_j - \mathbf{r}_i) \cdot \mathbf{q} - a_{j,i}^0)$$

and the steering control law in strolling motion:

$$w_i^*(t) = \hat{k}_W \frac{sgn(\phi_{iW})}{\tau_{iW}} + \frac{1}{N_i} \sum_{j \in V_i} (k_p d_{ij} sin\theta_{ij} + \hat{k}_v v sin\phi_{ij})$$

so that the neighborhood is determined by the following probability:

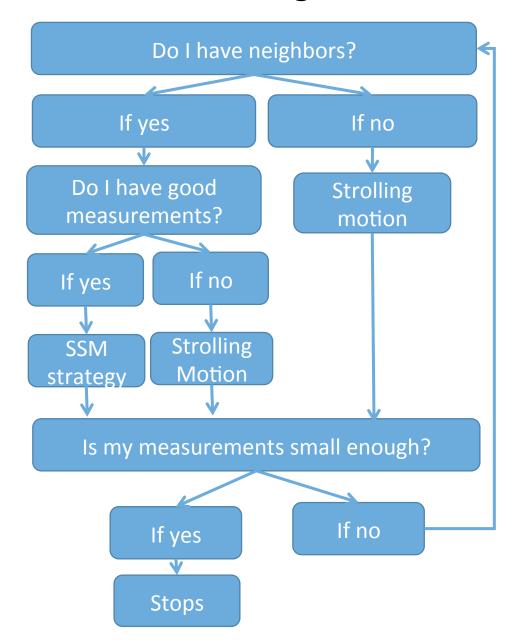
$$P(i|j) = (1 + exp(-\beta_1 - \beta_2 L_D - \beta_3 A_R))^{-1}$$

Switching Strategy

We introduced a **switching approach** between both the models:

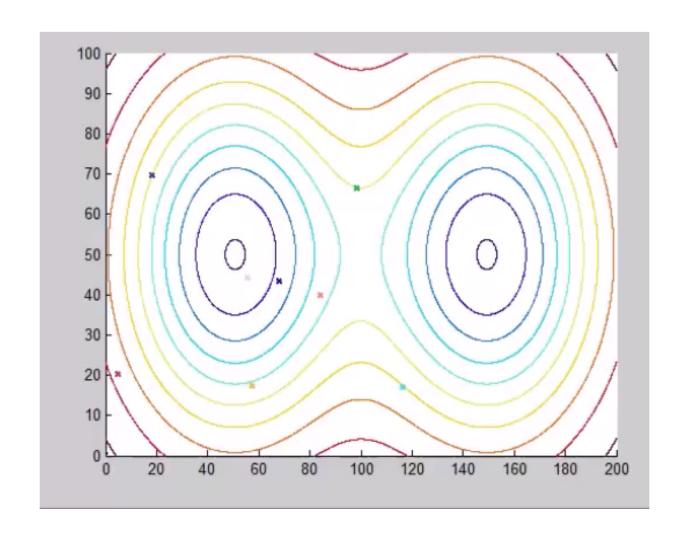
• Team:

- If the measurement > threshold (away from the source) => agents stroll around
- If measurement < threshold (near the source) => agents switch to SSM


• Single agent:

Randomly strolls around until

- It reaches the source by luck
 OR
- It encounters another agent to team up and keeps following either strolling motion or SSM according to the approach mentioned above


Combined Algorithm

Simulation – N=8 agents with 2 minima at (50,50)(150,50)

Next Steps

- Enable transition between both the models so that the trajectory remains smooth
- Even in the presence of wall avoidance term, the agents sometimes go beyond the boundaries
- Giving more weightage to those agents which are near the source
- Find applications for these algorithms in fields of controls and robotics.

Questions/Comments?