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The transformation of a three-dimensional dynamical system to its differential model can be used

to identify different nonlinear dynamical systems that share the same time series of one of its variables.

This transformation then can be used to find classes of nonlinear dynamical systems with similar

dynamical behavior. VC 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.3689438]

The characterization of the algebraic structure of a sys-

tem of nonlinear ordinary differential equations (ODEs)

is an open problem. There exist systems that have a dif-

ferent algebraic structure but have the same dynamical

behavior such as the Lorenz and the Wang systems. In

the case of some special choices of the parameters of

those two systems, they even can produce the exact same

time series of one of their variables. On the other hand,

there are, e.g., the Lorenz and the Chen systems. These

two systems have the same algebraic structure but the dy-

namics is different. There are more examples like that

and a rigorous characterization of all these systems from

their algebraic structure would be needed. Here, the

transformation of all these systems to jerk form (also

called differential form) is used to detect similarities and

differences between different systems. This way the

equivalence of systems such as the Lorenz and the Wang

systems, and the difference between the Lorenz and the

Chen systems can be understood. In this paper, there are

three published Lorenz-like systems characterized based

on their algebraic structure of their jerk form and there

are 17 possible Lorenz-like systems shown that have the

same jerk form.

I. INTRODUCTION

In 1963, Lorenz1 pointed out that reductions of the

Navier–Stokes partial differential equations to sets of ordinary

differential equations assumed a simple polynomial form

dxi

dt
¼ aijkxjxk � bijxj þ ci: (1)

He further pointed out that if the cubic form aijkxixjxk vanishes,

then every trajectory becomes trapped inside an ellipse of finite

size as t!1. If this condition is not met, some initial condi-

tions can wander off to infinity. The Lorenz equations

_x ¼ �rxþ ry;
_y ¼ Rx� y� xz
_z ¼ �bzþ xy

; (2)

satisfy this condition.

In view of the importance of the class of equations (Eq.

(1)) described by Lorenz, it is natural to ask if it is possible

to represent experimental time series by equations with this

structure. If it is possible, is the representation unique? If

not, what are the degrees of freedom in representations of

data by equations from this class of equations?

This problem is approached by transforming these equa-

tions to a standard form (“differential form” or “jerk form”).

For a three-dimensional phase space, this standard form has

the structure

_X ¼ Y;
_Y ¼ Z;
_Z ¼ FðX; Y; ZÞ:

(3)

The first variable X is some function of the phase space vari-

ables: X ¼ /ðx; y; zÞ ¼ /ðx1; x2; x3Þ. Many different sets of

equations of the type shown in Eq. (1) can map to the same

differential form, even with the same parameter values. The

number of distinct sets of equations with the same image dif-

ferential equation is a measure of the nonuniqueness inherent

in attempts to model data using equations of a particular

class.2

The paper is organized as follows: In Sec. II, the class of

dynamical systems that are considered here is introduced.

Then, the differential model of the Lorenz system is intro-

duced, and the relation of the parameters of the differential

model to the original Lorenz system is used to identify the 2-

parameter family of Eqs. (11) that share the same time series

of x1ðtÞ. This analysis is then used to explain the difference

of the Lorenz and the Chen3 systems. In Sec. III, the general

Lorenz-like system is introduced, and the relations between

the full general Lorenz-like system and its sub-systems are

shown. As example, it is shown that the Wang et al.4 and the

Lorenz systems share the same time series of the x1-variable.

The Lorenz, the Chen, and the Wang systems have the same

differential model. In Ref. 5, a classification of some Lorenz-

like systems was done using feedback circuits. In Sec. III C,

it is shown that the Ansatz library analysis yields a corre-

sponding classification of those systems from a purely alge-

braic point of view. Section IV is the summary and

discussion.
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II. GENERAL DESCRIPTION OF THE PROBLEM

A. Background

The class of models considered here is a 3D system of

ODEs with the right hand sides containing polynomials with

up to second order non-linearities (cf. Eq. (1)), which can be

written in a general form as

xi
: ¼ ai;0 þ ai;1x1 þ ai;2x2 þ ai;3x3 þ ai;4x2

1

þ ai;5x1x2 þ ai;6x1x3 þ ai;7x2
2 þ ai;8x2x3

þai;9x2
3; i ¼ 1; 2; 3: (4)

Usually, only a small subset of coefficients ai;� is

assumed to be nonzero. This subset defines the class of

models under consideration. This class has Nm nonzero

parameters ai;�.
The two questions asked here are (1) can a member of

this class of dynamical systems generate a particular time se-

ries? and (2) is this member unique or not?

To answer these questions, we investigate the Lorenz

class of dynamical systems

_x1 ¼ a1;1x1 þ a1;2x2;
_x2 ¼ a2;1x1 þ a2;2x2 þ a2;6x1x3;
_x3 ¼ a3;3x3 þ a3;5x1x2:

(5)

For this class, Nm ¼ 7.

B. Differential model of the Lorenz system

If we choose X ¼ /ðx; y; zÞ ¼ x1, the function F(X, Y, Z)

in Eq. (3) is

FðX; Y; ZÞ ¼ a1X þ a2X3 þ a3Y þ a4X2Y

þa5

Y2

X
þ a6Z þ a7

YZ

X
; (6)

where the parameters ai of the differential embedding are

related to the parameters ai;� of the Lorenz model by

a1 ¼ ða1;1a2;2 � a1;2a2;1Þa3;3;
a2 ¼ �a1;1a2;6a3;5;
a3 ¼ �ða1;1 þ a2;2Þa3;3;
a4 ¼ a2;6a3;5;
a5 ¼ �a1;1 � a2;2;
a6 ¼ a1;1 þ a2;2 þ a3;3;
a7 ¼ 1:

(7)

The differential model has Nd ¼ 7 nonzero parameters ai. The

function F(X, Y, Z) in Eq. (3) has two singularities for a5 and

a7 that were introduced by the transformation to jerk form.

C. Existence of a solution

We now address the first question: Is it possible to fit a

time series using a set of equations of the form Eq. (5)? We

first attempt to fit the time series to the canonical differential

form Eq. (6) by fitting the Nd ¼ 7 parameters ai. If a suitable

fit can be found, then it is possible to represent the solution

in terms of the Lorenz form Eq. (5) provided the relations

(cf. Eq. (7)) can be inverted.

D. Uniqueness of a solution

If a solution can be found, it may not be unique. It is

typical that if some set of parameters ai;� satisfies the inverse

transformation (7), then a new set of parameters ~ai;� also sat-

isfies the inverse transformation. The new parameters are

related to the original set by a scaling transformation

ai;� ! ~ai;� ¼ kpði;�Þai;� (8)

and leave the values of the coefficients ai unchanged.

The simplest way to determine these scaling relations,

specifically the set of exponents pði; �Þ, is to note that each

coefficient ar is a sum of products of powers of the original

model parameters ai;�. Take the logarithms of these nonlin-

ear product functions, construct the appropriate coefficient

matrix and look for the null space.

The scaled version of the inverse transformation (7)

with ai;�!ki;�ai;� is

a1 ¼ a1;1a2;2a3;3k1;1k2;2k3;3

�a1;2a2;1a3;3k1;2k2;1k3;3;
a2 ¼ �a1;1a2;6a3;5k1;1k2;6k3;5;
a3 ¼ �a1;1a3;3k1;1k3;3 � a2;2a3;3k2;2k3;3;
a4 ¼ a2;6a3;5k2;6k3;5;
a5 ¼ �a1;1k1;1 � a2;2k2;2;
a6 ¼ a1;1k1;1 þ a2;2k2;2 þ a3;3k3;3;
a7 ¼ 1:

(9)

To leave ai in Eq. (7) unchanged, the scale factors have to be

one (e.g., for a1: k1;1k2;2k3;3 ¼ 1 and k1;2k2;1k3;3 ¼ 1). Tak-

ing the logarithm leads to linear relations (e.g.,

log k1;1

� �
þ log k2;2

� �
þ log k3;3

� �
¼0 and logðk1;2Þþ logðk2;1Þ

þlogðk3;3Þ¼0). The set of linear relations derived from the

12 terms of Eq. (9) is summarized in matrix form

1 0 0 1 0 1 0

0 1 1 0 0 1 0

1 0 0 0 1 0 1

1 0 0 0 0 1 0

0 0 0 1 0 1 0

0 0 0 0 1 0 1

1 0 0 0 0 0 0

0 0 0 1 0 0 0

1 0 0 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 0

0
BBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCA

�

logðk1;1Þ
logðk1;2Þ
logðk2;1Þ
logðk2;2Þ
logðk2;6Þ
logðk3;3Þ
logðk3;5Þ

0
BBBBBBBB@

1
CCCCCCCCA
¼ 0: (10)

This 12� 7 matrix has a two-dimensional null space spanned

by the null vectors (0, 0, 0, 0,�1, 0, 1) and (0,�1, 1, 0, 0, 0, 0).

This means that for the Lorenz system, there exists a

2-parameter family of equations

_x1 ¼ a1;1x1 þ 1
n a1;2x2;

_x2 ¼ na2;1x1 þ a2;2x2 þ 1
m a2;6x1x3

_x3 ¼ a3;3x3 þ ma3;5x1x2

; (11)

that share the same time series x1ðtÞ. One of these two scal-

ing parameters is fixed by the condition that the trilinear

form (Lorenz’s aijkxixjxk) vanishes. This places the condition
1
m a2;6 þ ma3;5 ¼ 0 on the scale factor m, leaving only one in-

dependent scale factor n.
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Equation (11) can explain the differences between the

Lorenz system and the Chen system.3 In the Lorenz system,

the parameter a2;1 ¼ R is the most studied bifurcation param-

eter. For the Chen system, the additional parameter a2;2 is

changed. Since parameter changes of a2;1 and a2;2 are not

connected by any scaling factor in Eq. (11), the two systems

will not share the same time-series x1ðtÞ.

III. GENERAL LORENZ-LIKE SYSTEM

A. Differential model of a general Lorenz-like system

As shown in Refs. 2 and 6 for the example of the Rössler

equations, a wider class of systems (wider than Eq. (11)) can

exist that share the same differential model and therefore

also the same time series. To determine such a class of dy-

namical systems, the Ansatz library (see Refs. 2 and 6–8 for

details) is used to find all 3D systems with constant, linear,

and bilinear terms that have the same functional form as the

differential model (6). This class of systems is

_x1 ¼ b1;1x1 þ b1;2x2;
_x2 ¼ b2;1x1 þ b2;2x2 þ b2;6x1x3;
_x3 ¼ b3;0 þ b3;3x3 þ b3;4x2

1 þ b3;5x1x2:
(12)

For this class, Nm ¼ 9.

To determine the relations among the parameters bi;�, the

differential model of system (12) is constructed. The functional

form of the differential model is (6) and the relations between

the parameters ai in (6) and the parameters bi;� in Eq. (12) is

a1 ¼ b1;2b2;6b3;0 � b1;2b2;1b3;3 þ b1;1b2;2b3;3;
a2 ¼ b1;2b2;6b3;4 � b1;1b2;6b3;5;
a3 ¼ �ðb1;1 þ b2;2Þb3;3;
a4 ¼ b2;6b3;5;
a5 ¼ �b1;1 � b2;2;
a6 ¼ b1;1 þ b2;2 þ b3;3;
a7 ¼ 1:

(13)

When this set of equations is invertible, a fit using the differ-

ential model Eq. (6) can be mapped onto a fit using the

model of Eq. (12).

Applying the same scaling argument as for the differential

model (7) of the Lorenz system, a set of linear relations for the

14 term scalings in Eq. (13) can be summarized in matrix form,

0 1 0 0 1 1 0 0 0

0 1 1 0 0 0 1 0 0

1 0 0 1 0 0 1 0 0

0 1 0 0 1 0 0 1 0

1 0 0 0 1 0 0 0 1

1 0 0 0 0 0 1 0 0

0 0 0 1 0 0 1 0 0

0 0 0 0 1 0 0 0 1

1 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

1 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0

0
BBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCA

�

logðk1;1Þ
logðk1;2Þ
logðk2;1Þ
logðk2;2Þ
logðk2;6Þ
logðk3;0Þ
logðk3;3Þ
logðk3;4Þ
logðk3;5Þ

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA

¼ 0:

(14)

This 14� 9 matrix has a two-dimensional null space spanned

by the null vectors (0, 1, �1, 0, �1, 0, 0, 0, 1) and (0, �1, 1,

0, 0, 1, 0, 1, 0).

This means that for the general Lorenz-like system (12),

there exists a 2-parameter family of equations

_x1 ¼ b1;1x1 þ 1
n mb1;2x2;

_x2 ¼ n 1
m b2;1x1 þ b2;2x2 þ 1

m b2;6x1x3;
_x3 ¼ nb3;0 þ b3;3x3 þ nb3;4x2

1 þ mb3;5x1x2:
(15)

Once again the scale factor m is constrained by the relation
1
m b2;6 þ mb3;5 ¼ 0.

The Lorenz system (2) and the general Lorenz-like

system (12) will share the same time series x1ðtÞ only when

the set of parameters ai in Eq. (7)—with a1;1 ¼ �r; a1;2

¼ r; a2;1 ¼ R; a2;2 ¼ �1; a2;6 ¼ �1; a3;3 ¼ �b, and a3;5

¼ 1—and in Eq. (13) are the same

brðR� 1Þ ¼ ðb1;1b2;2 � b1;2b2;1Þb3;3

þb1;2b2;6b3;0;

�r ¼�b1;1b2;6b3;5 þ b1;2b2;6b3;4;

�bðrþ 1Þ ¼�ðb1;1 þ b2;2Þb3;3;

�1 ¼ b2;6b3;5;

1þ r ¼�ðb1;1 þ b2;2Þ;
�1� b� r ¼ b1;1 þ b2;2 þ b3;3;

1 ¼ 1:

(16)

One example for possible choices of the parameters in

Eq. (16) is r ¼ 10;R ¼ 28; b ¼ 8
3

and b1;1 ¼ 1; b1;2 ¼ 1;
b2;1 ¼ 2061=8; b2;2 ¼ �12; b2;6 ¼ 1; b3;0 ¼ 1; b3;3 ¼ � 8

3
; b3;4

¼ �11; b3;5 ¼ �1, and therefore

_x1 ¼ x1 þ x2;
_x2 ¼ 2061

8
x1 � 12x2 þ x1x3;

_x3 ¼ 1� 8
3

x3 � 11x2
1 � x1x2:

(17)

This system shares the time series of the x1-variable with the

original Lorenz system (2) for r ¼ 10;R ¼ 28; b ¼ 8
3
.

B. Subsystems of the general Lorenz-like system

There are 17 subsets of the general Lorenz-like system

(12) with some of the parameters bi;� set to zero that have

the same functional form of the differential model as the

original Lorenz system (5). Table I lists all those systems.

System (14) is the original Lorenz system (5) and system (1)

is the full general Lorenz-like system (12). Only for systems

(1)-(12) in Table I, an equation similar to Eq. (16) can be

solved. Therefore, only those systems with appropriate pa-

rameter choices can share the same time series x1ðtÞ.
This is illustrated with an example.

System 11 is the system published by Wang et al.,4

_x1 ¼ rðx2 � x1Þ;
_x2 ¼ �x2 � x1x3;
_x3 ¼ �R� x3 þ x1x2:

(18)

For this system, the coefficients of the differential model

are
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a1 ¼ Rr� r;
a2 ¼ �r;
a3 ¼ �r� 1;
a4 ¼ �1;
a5 ¼ rþ 1;
a6 ¼ �r� 2;
a7 ¼ 1:

(19)

The Lorenz system (5) and the Wang system (18) will share

the same time series x1ðtÞ only when the set of parameters ai

in Eqs. (7) and (19) are the same

Rr� r ¼ a1;1a2;2a3;3 � a1;2a2;1a3;3;

�r ¼�a1;1a2;6a3;5;

�r� 1 ¼�a1;1a3;3 � a2;2a3;3;

�1 ¼ a2;6a3;5;

rþ 1 ¼�a1;1 � a2;2;

�r� 2 ¼ a1;1 þ a2;2 þ a3;3;

1 ¼ 1:

(20)

Substituting the solutions of Eq. (20), a1;1 ¼ �r; a1;2

¼ Rr
a2;1
; a2;2 ¼ �1; a2;6 ¼ � 1

a3;5
, and a3;3 ¼ �1 and the arbi-

trary choice of the free parameters a2;1 ¼ 1 and a3;5 ¼ 1 in

the Lorenz system (5) leads to the Lorenz system written in

the form

_x1 ¼ rðRx2 � x1Þ;
_x2 ¼ x1 � x2 � x1x3;
_x3 ¼ �x3 þ x1x2:

(21)

This system generates the same x1 time series as the Wang

system (18).

C. Connection to feedback circuits

Letellier et al.5 used feedback circuits analysis to clas-

sify nine Lorenz-like systems. The Ansatz library approach

and the feedback circuit analysis yield the same classification

of the Lorenz-like systems that are subsystems of the general

Lorenz-like system (12). Certain terms in the differential

model seem to correspond to certain feedback circuits.

Note that three of the nine Lorenz-like systems in Ref. 5

(Shimizu and Morioka, Rucklidge, and Burke and Shaw)

violate the condition that the trilinear form (Lorenz’s

aijkxixjxk) vanishes.

Three of the systems1,3,4 in Ref. 5 have the same differ-

ential model as the general Lorenz-like system (12),

4 systems9–12 have one term less in the differential model,

and 2 systems12,13 have a different differential model and

more terms than the general Lorenz-like systems. Here, only

the first three systems that have the same differential model

as the Lorenz system will be considered. Table II lists these

systems as subsystems of the general Lorenz-like system

(12). All those systems have the same differential model and

the same feedback circuits (J11J22J33; J11J23J32; J33J12J21 and

J12J23J31). Therefore, these systems have similar dynamical

behavior. The Lorenz and the Wang systems further can

share the same time series as discussed before. A discussion

of the changes of the topology of the attractors caused by

changes in the feedback circuits can be found in Ref. 5.

IV. SUMMARY AND DISCUSSION

A 3D system can be rewritten as a differential model

where the state space variables are one of the coordinates of

the original 3D system X ¼ /ðx1ðtÞ; x2ðtÞ; x3ðtÞÞ and its suc-

cessive derivatives Y ¼ _X and Z ¼ _Y. The differential model

is unique while there exists a class of original 3D systems

that share the same differential model. The example of the

general Lorenz-like system and a class of Lorenz-like sys-

tems is shown.

If the parameters ai of the differential model are the

same for a class of original 3D systems, then this class of

systems will share the same time series X¼ x(t). An example

shown here is the Wang system.4

The transformation between the 3D systems in the origi-

nal phase space and the differential model in the differential

embedding space can be used to identify relations between

the parameters ai;� of the original systems. These relations

can be used to explain why some systems with the same

functional form can have different dynamics (e.g., the Lor-

enz and the Chen systems).

The method used in this paper is based on the properties

of the algebraic relations between the original 3D system of

ODEs and the corresponding differential model. It is shown

that a classification of Lorenz-like systems using topological

analysis with feedback circuits corresponds to the algebraic

classification in this paper.

TABLE I. Subsystems of the general Lorenz-like system (12) that have the

same functional form of the differential model as the Lorenz system (5). An

“x” denotes that the term bi;� is non-zero.

b1;1 b1;2 b2;1 b2;2 b2;6 b3;0 b3;3 b3;4 b3;5

1 x x x x x x x x x

2 x x x x x x x x

3 x x x x x x x x

4 x x x x x x x x

5 x x x x x x x x

6 x x x x x x x x

7 x x x x x x x

8 x x x x x x x

9 x x x x x x x

10 x x x x x x x

11 x x x x x x x

12 x x x x x x x

13 x x x x x x x

14 x x x x x x x

15 x x x x x x

16 x x x x x x

17 x x x x x x

TABLE II. Parameters of some Lorenz-like systems1,3,4 in Table I.

System Table I a1;1 a1;2 a2;1 a2;2 a2;6 a3;0 a3;3 a3;4 a3;5

Lorenz #14 �r r R �1 �1 �b 1

Chen #14 �r r R� r R �1 �b 1

Wang #11 �r r �1 �1 Ra �1 1
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