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We consider the notion of qualitative information and the practicalities of extracting it from experimental data. Our 
approach, based on a theorem of Takens, draws on ideas from the generalized theory of information known as singular system 
analysis due to Bertero, Pike and co-workers. We illustrate our technique with numerical data from the chaotic regime of the 
Lorenz model. 

1. Introduction 

In this paper we consider the notion of qualitu- 

tiue informationt and how it may be extracted 
from experimental time series. That this type of 
information might be recovered from a time series 
was first suggested by Packard et al. [l]. These 
authors suggested that a phase portrait, equivalent 
in some sense to that of the underlying dynamical 
system, could be reconstructed from time deriva- 
tives formed from the data. Another method of 
phase portrait reconstruction was suggested inde- 
pendently by Takens [2]. This method, which we 
shall discuss below, is known as the “method of 
delays”. In his paper, Takens provided both ap- 
proaches with a firm theoretical foundation. As 
general experimental tools, however, they remain 
ill-defined since they do not take account of prob- 
lems associated with the process of measurement. 

In this paper we develop another method which 
draws on Takens’ proof and on ideas from the 

*Also at: Imperial College of Science and Technology, De- 
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+By “qualitative information” we mean that knowledge which 
may be obtained from a qualitative analysis of a dynamical 
system. 

generalized theory of information, known as singu- 
lar system analysis, recently developed by Bertero, 
Pike and co-workers [3]. By casting the problem in 
an information theoretic context, a framework is 
established which allows us to address the prob- 
lems associated with the noisy, finite precision, 
sampled data produced by an experimental mea- 
surement. We are further able to resolve in a 
self-consistent fashion the well-known ambiguities 
inherent in the application of the method of de- 
lays: the need for an ad hoc lag time and the 
choice of dimension for the space in which the 
data are plotted. 

In section 2 of this paper we introduce some of 
the relevant language of dynamical systems theory, 
the definition of qualitative dynamics and the con- 
cept of equivalence relations, discuss Whitney’s 
embedding theorem, and review the method of 
delays. Section 3 is primarily concerned with the 
singular system analysis and contains the main 
results of this paper. An example of the methodol- 
ogy introduced in this section is applied to a time 
series, obtained from the Iorenz model, in section 
4. Certain details of the implementation of the 
methodology are relegated to an appendix. A brief 
conclusion is given in section 5. 
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2. Dynamical systems and the method of delays 

2.1. Dynamical systems theory 

Consider a dynamical system formally as: 

+f=F(y), (2.1) 

where each y = (y,, y2,. . .) represents a state of 
the system and may be thought of as a point in a 
suitably defined space- which we shall call phase 
space, S. The dimensionality of S, since it controls 
the number of possible states, will be associated 
with the number of a priori degrees of freedom of 
the system. The vector field, F(y), is in general a 
non-linear operator acting on points in S. Under 
well-known conditions on F(y) (i.e., F(y) is lo- 
cally Lipschitz) equation (2.1) defines an initial 
value problem in the sense that a unique solution 
curve passes through each point y in the phase 
space. Formally we may write the solution at time 
t given an initial value y0 as y(t) = qty,. ‘p, repre- 
sents a one parameter family of maps of the phase 
space into itself. We can conceive of solutions to 
all possible initial value problems for the system 
by writing them collectively as Q@. This may be 
thought of as a flow of points in the phase space. 

Initially the dimension of the set cp,S will be 
that of S itself. As the system evolves, however, it 
is generally the case for so-called dissipative sys- 
tems that the flow contracts onto sets of lower 
dimension. These are called attractors. For the 
purposes of the present work it will be assumed 

that the attractor of interest exists within a smooth 
manifold which we call M. This, too, will generally 
have a dimension less than that of S. On the 
attractor the system has fewer degrees of freedom 
and consequently requires less information to 
specify its state. Physically this corresponds to 
self-organization and is common in systems driven 
far from thermodynamic equilibrium. For exam- 
ple, in the Belousov-Zhabotinski chemistry experi- 
ment [4] there are about 30 chemical species 
participating in the reaction-thus dim S = 30. 
However, in the parameter regime where there 
exist oscillations with a single fundamental 
frequency, the attractor is a limit cycle in S and 
hence has a dimension of 1. A more extreme 
example is found in fluid dynamic experiments 
such as the Couette-Taylor system [5] where S is 
in fact a function space since equation (2.1) is 
actually a partial differential equation - thus dim 
S = cc. However, when the system control param- 
eters are adjusted so as to stabilize time-indepen- 
dent Taylor-vortex flow, the attractor is a fixed 
point in S and hence has a dimension of 0. 

2.2. Qualitative dynamics 

The complete solution of eq. (2.1) is equivalent 
to a complete knowledge of the family ‘pa. How- 
ever, in most problems of interest obtaining this 
knowledge is not a practical proposition. It was 
Poincare who observed that a great deal of qualita- 
tive information about the dynamics could nev- 
ertheless be obtained [6]. A qualitative study of eq. 

Fig. 1. Schematic representation of an equivalence relation between two vector fields F and G. The invertible map, 
cp,( y) of F into orbits #,,(a( y)) of 0. 

@, takes orbits 
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(2.1) results in a geometric description of its orbits. 
This will be referred to as the phase portrait. In 
order to give meaning to the idea of qualitative 
information and to be able to compare and clas- 
sify the phase portraits of different systems, an 
equivalence relation between differential equations 
must be introduced [7, 81. 

members of the same equivalence class will be said 
to have the same qualitative dynamics. 

2.3. Embeddings of manifolds 

In .general, two C’ vector fields, F and 0, are 
said to be C k equivalent (k I r) if there exists a C k 
diffeomorphism 6, which takes orbits cp,( y) of F 
to orbits $,,(@( y)) of G in such a way as to 
preserve their orientation. Intuitively, one can think 
of this as meaning that 9 is an invertible, possibly 
non-linear, change of coordinates, which, though 
distorting the flow, will do so smoothly and will 
not confuse the order in which the points on the 
trajectory are visited. When k = 0 @ is a homeo- 
morphism-that is, continuous and one-to-one in 
both directions. This is known as topological, or 
Co, e~iuale~ce. If, in addition, one has the above 
smoothness conditions on @ (k 2 l), then one has 
the stronger di~ere~tiabie e~iva~enee. These ideas 
are represented picto~~ly in fig. 1. 

The following are useful consequences of topo- 
logical equivalence: 

(1) y EM is a singularity of F iff e(y) is a 
singularity of 0. 
(2) The orbit of y for the vector field F, is closed 
itf the orbit of @i(y) for G is closed. 
(3) The image of the w-limit set of the orbit of y 
for f under @ is the o-limit set of the orbit of 
e(y) for G and similarly for the tw-limit set. 

Dynamical systems in phase spaces of widely 
differing dimensions may belong to the same 
equivalence class provided that their asymptotic 
dynamics are confined to attracting manifolds of 
the same dimensionality. This forms the basis of a 
technique which introduces the ideas of qualitative 
dynamics into the experimental domain. As has 
been observed, it is a common phenomenon in 
physical systems that self-organization gives rise to 
system evolution on low dimensional manifolds. 
This leads to the possibility that physically dis- 
parate systems may give rise to qualitatively 
equivalent dynamics, and, moreover, that all mem- 
bers of a given equivalence class may be rep- 
resented by a canonical model equation. The 
apparent problem with pursuing this idea is that, 
in general, it is not at all clear what needs to be 
measured in order to relate to the dynamics on the 
underlying attractor. For example, in the 
Couette-Taylor tlow experiment laser-doppler 
velocimetry enables the measurement of the evolu- 
tion of one component of the velocity at a point in 
the fluid -apparently a very low-level description 
of an evolution in a function space. If it were 
possible to abstract in some way the low-dimen- 
sional manifold from its ~~-Dimensions phase 
space, this di~culty might be avoided. Such an 
abstraction process may be achieved by an embed- 
ding of the manifold in a lower dimensional space. 

This means that important topological objects de- An embedding is a smooth map, say @, from the 
fined by the flow are preserved by the equivalence manifold it4 to a space U such that its image 
relation. Furthermore, topological equivalence pre- @(M) C U is a smooth submanifold of U and that 
serves the stability properties of fixed points, but ip is a diffeomorphism between M and Q(M). In 
does not, however, distinguish between nodes, im- other words, the embedding of M in U is a 
proper nodes, and foci. For this the stronger con- “realization” of M as a submanifold within U. In 
dition of differentiable equivalence is required. It particular, the fact that the embedding gives a 
follows, therefore, that the classification of solu- diffeomorphism between two manifolds means that 
tions to differential equations into qualitatively we have an important prerequisite with which to 
distinct types may be made on the basis of their set up a differentiable equivalence relation. A gen- 
topological or differentiable equivalence. Thus eral existence theorem for embeddings in Euclidean 
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embedding e 

diffeomorphism 

Fig. 2. A schematic representation of the method of delays. The asymptotic dynamics of an experimental system is assumed to 
correspond to an evolution on an m-dimensional submanifold of the state space S. A sequence of real-valued measurements, v, is 
used to construct a map aF. L, into a Euclidean n-space, R”. The image of M, @F,I,( M), is a submanifold of R” under the hypotheses 
of Takens’ theorem. Moreover, the evolution on M is C’-equivalent to that on Cp, ,.( M). 

spaces was given by Whitney [9] who proved that a 
smooth (C2) m-dimensional manifold (which is 
compact and HausdorK) may be embedded in 
W 2m+1. This theorem is the basis of reconstruction 
techniques for phase portraits from time series 
measurements proposed by Packard et al. [l] and 
by Takens [2]. 

The present paper is concerned with systems for 
which the underlying dynamics may be associated 
with a flow corresponding to a physical process 
continuous in time. The relevant theorem for flows 
was proved by Takens and is the basis for the 
work to be described. In the present notation his 

theorem (theorem 2) states: 

Let M be a compact manifold of dimension m. 
For pairs (F, u), F a smooth (i.e. C2) vectorfield 
and u a smooth function on M, it is a generic 
property that QF, ,( y): M + W 2m+1, defined by 

is an embedding, where ‘pt is the flow of F. 

Here u( y) corresponds to the value of a measure- 
ment made on the system in a state given by 
REM. 



The conceptual framework discussed here is il- dimension the embedding dimension. We will de- 

lustrated in fig. 2, where it is shown how the above note the embedding dimension by n to emphasize 

theorem provides an explicit construction of an the fact that it will not, in general, equal 2m + 1 

embedding implied by Whitney’s theorem. In since the dimension of M is not known a priori. 

practice it is necessary to relate the above to a time Nevertheless, it is supposed that n 2 2m + 1 to 

series of measurements made on the system: satisfy the Whitney embedding theorem. 

ui, v *,***Y ui9 ui+i,**., 

where ui = u(cpi( y)). Clearly here we are dealing 
with a sampled time series for which the sampling 
interval need not correspond to the unspecified 
and arbitrary interval implied by the time one 
map, ‘pi, utilized in the theorem. We shall call the 
practical implementation of this theorem the 
method of delays. The details of the method will 
now be discussed. 

2.4. Method of delays 

At this stage it is convenient to introduce some 
vocabulary. The space which contains the image of 
!#j F,. will be called the embedding space and its 

(a) A 5-window: 

In applying the method of delays a useful con- 
cept is an “(n, J)-window” which makes visible n 
elements of the time series. When J = 1 the ele- 
ments are consecutive, and when J z 1 there is an 
interval of J sample times between each visible 
element. We shall refer to an (n, l)-window as an 
n-window. At any stage the elements visible in the 
(n, J)-window constitute the components of a vec- 
tor in the embedding space, R”. As the time series 
is advanced step-wise through the window, a se- 
quence of vectors in the embedding space is 
generated. These form a discrete trajectory. To 
represent this we use the notation 

xi= @F,u(cPi( Y)) 

= (“iS ut+J,emmT Ui+(n-l).f)Tm 
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(b) A (5,3)-window: 

(c) The trajectory matrix fol 

X I N-t 

Fig. 3. Illustrations of the use of the method of delays: (a) The construction of vectors in RS from a sequence of measurements of u 
using a lag-time of one sample-time. (b) As in (a), but with a lag-time of three sample-times. (c) The construction of the trajectory 
matrix, X, from vectors obtained by application of a 5-window (see (a)) to a time series. 
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The construction of vectors using an (n, J)- 
window is illustrated in fig. 3. 

There are several difficulties in applying the 
method of delays in its present form. These can be 
traced to the fact that Takens’ theorem makes no 
direct contact with the process of measurement. In 
particular, there are several time scales that are 
unspecified. The most obvious are the sampling 
time, TV, the “lag time”, rr_ = JT~, and the window 
length, rW = nor. In practice, short sampling times 
are employed to produce good approximations to 
smooth trajectories. However, this has the unfor- 
tunate effect of creating highly correlated samples 
within an n-window-thus causing the trajectory 
to lie close to the diagonal in the embedding space. 
To avoid this, the more general (n, J)-windows, 
with or large enough to introduce a degree of 
statistical independence between the components, 
are used. 

Takens’ theorem appears to provide information 
about the choice of embedding dimension, stating 
that n r 2m + 1. This, however, is of little practi- 
cal relevance since m = dim M is not generally 
known a priori. The approach taken in published 
work has been to increase n systematically, until 
trajectories no longer appear to intersect [lo]. This 
is at best a rather subjective criterion, becoming 
rapidly unworkable in higher dimensions or in the 
presence of noise. A further difficulty is that plot- 
ting data in this way introduces an artificial sym- 
metry into the phase portrait. A consequence of 
this is that time-averaged moments of trajectories 
projected onto the coordinate axes become inde- 
pendent of coordinate for long time series. More 
confusing, from the point of view of interpreting 
the multi-dimensional structure of attractors, is the 
fact that many projections onto orthogonal planes 
are identical. For example, the projection onto the 
(i, j)-plane is the same as that onto all the (i + 
k, j + k)-planes for all k such that i + k, j + k I 
n. Indeed, as one increases the embedding di- 
mension, in each new embedding space the artifi- 
cial symmetry is increased. 

This undesirable property results from choosing 
a basis for the embedding space in an arbitrary 

manner. Intuitively one could hope for a choice of 
basis such that as n increases beyond 2m + 1 the 
attractor will be found, with invariant geometry, 
confined to a subspace of fixed dimension. In the 
next section we show how an analysis of the 
information content of the time series can be used 
to derive such a basis. This will have the additional 
advantage of being able to deal with experimental 
noise in a systematic fashion, thereby remedying a 
deficiency in the implementation of the method of 
delays as described above. 

3. A statistical approach to the method of delays 

In this section we develop a singular system 
approach to the method of delays which deals with 
the ambiguities and limitations described in the 
previous section. A consequence of this analysis 
will be that we eliminate the need to introduce 
statistical independence through the use of a gen- 
eral (n, J)-window. Thus, we set J = 1 and dis- 
pense with arbitrary lag times. 

3.1. The singular system 

The application of an n-window to a time series 
of NT data points results in a sequence of N = N, 
-(n-l)vectors, {xiEW”li=1,2,...,N} in the 
embedding space. Such a sequence can be used to 
construct a trajectory matrix, X, which contains 
the complete record of patterns which have 
occurred within the window: 

XCN-‘/~ (3.1) 

where N-l/’ has been introduced as a convenient 
normalization. The trajectory matrix and its trans- 
pose may be thought of as linear maps between 
the spaces W” and R N. The embedding space, W ‘, 
is the space of all n-element patterns and is the 
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natural object of interest. A similar interpretation 
of RN is clearly possible. Indeed, the columns of 
X bear the same relationship to one another as do 
the rows. However, for the present purposes we 
shall use RN in a simple way which utilizes the 
obvious property that the standard basis vectors 
{ e, E R N }, can be used as an indexing system for 
points on the trajectory in R” (where e, is the i th 
column of the N x N unit matrix). That is, for- 
mally we can extract the ith vector, xi, from the 
trajectory matrix by operating from the left with 
N i/ler. 

I * 

XT = jV’/2e’X. (3.2) 

It follows directly that operating with a general 
vector, wT = N1/2Efl_1wieT, will produce a linear 
combination of vectors on the trajectory in W”. 
Then wTX is the mean position in the embedding 
space relative to a measure induced on the sam- 
pled attractor by the choice of w. Alternatively, it 
corresponds to a weighted time-average over the 
trajectory. We note that in this context the con- 
cepts of space- and time-average are interchange- 
able: Just as the standard basis of RN indexes the 
points in the embedding space so also does it 
represent the labelling of a time-sequence. 

The triple (X, BP “, W “) can be analysed using a 
singular system as considered in the generalized 
theory of information developed by Bertero, Pike, 
and their co-workers [3]. In the following we shall 
develop a singular system analysis based on the 
method of delays. 

3.2. Independence and orthogonality 

A central concept in distinguishing chaotic sys- 
tems from stochastic, Brownian-like systems is that 
of number of degrees of freedom. Unfortunately, 
there are numerous definitions of number of de- 
grees of freedom depending on the context in 
which it arises. For example, in signal processing it 
is the number of modes used to describe a signal 
which contain significant power. In dynamical sys- 
tems it is usually used to specify the dimensional- 

ity of an attracting manifold within the phase 
space, the dimensionality of the attractor itself or 
even the dimension of the whole phase space. We 
shall show that the signal processing definition 
when related to a dynamical system interpretation 
becomes the dimensionality of the subspace in 
which the embedded manifold is to be found. This 
has shortcomings since, unlike m = dim M, it is 
not an invariant of the embedding process. How- 
ever, it will be shown to give a reasonable upper 
bound to m. 

We begin, therefore, by calculating the dimen- 
sionality of the subspace which contains the em- 
bedded manifold. To do this we need to know the 
number of linearly independent vectors that can 
be constructed from the trajectory in the embed- 
ding space by forming linear combinations of the 
xi. It has already been established that vectors in 
RN give rise to such linear combinations when 
they act on the trajectory matrix. Consider the set 
of vectors { si E W N }, which we assume give a set 
of linearly independent vectors in R” by their 
action on X. We shall also assume, with no loss of 
generality, that the latter have been orthonormal- 
ized. Hence, in general, they constitute part of a 
complete orthonormal basis, { ci 1 i = 1,. . . , n }, for 
the embedding space. By construction, the follow- 
ing relationship holds: 

s,rx = I&, (3.3) 

where the { ai } are a set of real constants which 
will be used to fix the normalization of both sets of 
vectors. 

The orthonormality of the { ci} imposes the 
following condition: 

S*?XXTSj = aiaj6ij, (3.4) 

where Sij is the Kronecker delta. The N x N ma- 
trix 8 = XX= is real symmetric, and hence its 
eigenvectors form a complete orthonormal basis 
for RN. In particular, the above equation is solved 
by the eigenvectors of 8: 

esi = +s; (3.5) 
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provided the { 62) are interpreted as the corre- 
sponding eigenvalues. It should be noted that real 
matrices of the form XXr are non-negative de- 
finite. Therefore, the { ui} are real constants which 
may themselves be taken to be non-negative 
without loss of generality. 

Eq. (3.1) may be used to show that 8 is actually 
an array of scalar products of all pairs of points on 
the trajectory in the embedding space: 

1 +* x:x2 .* . 4% 1 

1 i : 1 
and for this reason it will be called the structure 
matrix of the trajectory. Equally, it may be inter- 
preted as being composed of the correlations be- 
tween all pairs of patterns to have appeared in the 
n-window. The considerable redundancy in speci- 
fying the correlations between all pairs of patterns 
results in 8 having low rank. This is borne out by 
eq. (3.3) which shows that there are, at most, n of 
the { ai} which are non-zero. Because of this the 
difficulty of diagonalizing 8 when N is large can 
be avoided. 

To explore this point further, we look for an 
inverse relationship to eq. (3.3) whereby an expres- 
sion for the vector si which yields a particular c, is 
obtained. This is: 

xc; = uisi (3.7) 

which, when ui # 0, may be derived by taking the 
transpose of eq. (3.3), operating from the left with 
X, and using eq. (3.5). The { si} have been shown 
to be an orthogonal set, therefore, the following 
eigenvalue equation can be derived analogously to 
eq. (3.5): 

ZCi = a+, . (3.8) 

Here X= X=X is a real, symmetric n X n matrix 
which may be written as: 

(3.9) 

using the definition of the trajectory matrix. This 
is the time-average of the dyadic product xix:. 

Thus 2 is the covariance matrix of the components 
of the {xi }, averaged over the entire trajectory; 
that is, the time-averaged correlation between all 
pairs of elements in the n-window. Expressed in 
terms of the original time series, this has the form: 

1 ==- 
N 

1 

Equation (3.8) is far more tractable than eq. (3.5) 
since it is implicit to the approach that the embed- 
ding dimension is small. 

Returning to the question of the rank of 8, we 
note that the derivation of eq. (3.8) from eq. (3.5) 
shows that the non-zero eigenvalues of the struc- 
ture matrix equal the non-zero eigenvalues of the 
covariance matrix. That is, rank 8 = rank X = n’ 
I n. One is thus led to the observation that W N 
can be decomposed into a subspace of dimension 
n’ and its orthogonal complement. The n’-dimen- 
sional subspace is spanned by a set { sili = 
1 ,*.-, n’} which is such that each corresponding 
average over the xi gives rise uniquely to a basis 
vector c, E BP” according to eq. (3.3). The comple- 
mentary subspace, spanned by the set { sil i = n’ + 
1 >*a*, N}, is the kemal of X mapping onto the 
origin of the embedding space through eq. (3.3). 

The complete set {si} is a basis for the con- 
struction of all possible averages over the trajec- 
tory. The significance of the decomposition is that 
only the averages associated with the n’-dimen- 
sional subspace give a non-trivial vector in W”. 
There are at most n’ linearly independent vectors 
in the embedding space that may be constructed 
from the trajectory. Therefore, it might be sup- 
posed that the number n’, the rank of Z, is the 
dimensionality of the subspace containing the em- 
bedded manifold. However,,account must be taken 
of the fact that X has contributions from sources 
of experimental noise. This point is addressed in 
the next section. 
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3.3. Singular value decomposition and noise 

To study the effect of noise it is necessary to 
discuss the eigenvectors and their associated spec- 
trum. Consider the orthogonal n X n matrix C 
which has columns consisting of the vectors {c,}, 

C=(c,,c2,..., c,,), and the diagonal matrix B = 

diag( ul, u2,. . . , a,), where the ordering uI 2 u2 2 
. . . 2 u, L 0 is assumed. Using this notation, eq. 

(3.8) is: 

ZC= CZ2. (3.10) 

Using the definition of Z it follows that: 

(XC)‘( XC) = x2. (3.11) 

The matrix XC is the trajectory matrix projected 
onto the basis { ci}. This result expresses the fact 
that in the basis { ci} the components of the 
trajectory are uncorrelated since the { ci} are ob- 
tained from the diagonalization of the covariance 
matrix. It was in anticipation of this result that we 
omitted consideration of general (n, J)-windows. 
This result also shows that each u/ is the mean 
square projection of the trajectory onto the corre- 
sponding ci. Therefore, the spectrum { (~2 } has 
information about the extent to which the trajec- 
tory explores the embedding space. One may think 
of the trajectory as exploring on average, an 
n-dimensional ellipsoid. The { ci} then give the 
directions and the { ui} the lengths of the principal 
axes of the ellipsoid. In the previous section the 
trajectory was found to be confined to a subspace 
of dimension equal to the rank of E In a noisy 
environment this needs qualification since the 
presence of noise will tend to smear out the de- 
terministic behaviour, and, in the directions associ- 
ated with small or vanishing ui, the noise will 
dominate. Therefore, the rank of X is an upper 
bound to the dimensionality of the subspace ex- 
plored by the deterministic component of the 
trajectory. 

The above formalism, as is well known from 
linear algebra, can be used to express the singular 
value decomposition of a singular, linear map [ll]. 

The significance of this in the context of informa- 
tion theory has been discussed recently in a differ- 
ent application [3]. Here, we are interested in the 
singular value decomposition of the trajectory ma- 
trix: 

x= SECT, (3.12) 

where S is the N X n matrix of eigenvectors of 
0, n’ of which have non-zero eigenvalues. The 
vectors of C and S will henceforth be referred to 
as the singular vectors of X, while the elements of 
the diagonal matrix, Z, will be called the associ- 
ated singular values. 

To exemplify the effect of noise consider the 
following simple model of a time series with a 
noise component (j: vj = U; + [,. Here, and below, 
an overbar indicates a quantity associated with the 
deterministic component. For white noise uncorre- 
lated with U; the autocorrelation function of the 

-- 
time series can be written (vOvj) = (vOvj) + 
(t ‘)a,, where the angle brackets refer to a time 
average. Generally, in the limit of an infinite time 
series of statistically stationary data, the covari- 
ante matrix is expected to have the Toeplitz 
structure: _ij v = g([i - j]~,), where g( 7) is the au- 
tocorrelation function of the continuous time 
series. In this limit the covariance matrix for the 
above time series may be decomposed into two 
parts: E = E + (E2)1,, where 1, is the n x n unit 
matrix. In this case, the singular values of X are 
shifted uniformly: 

a,‘=<‘+ (t2), i=1,2 ,..., n, (3.13) 

where q2 is an eigenvalue of 3. Thus the noise 
causes all the singular values of the trajectory 
matrix to be non-zero. Hence, the trajectory ap- 
pears to explore all dimensions of the embedding 
space. We need, therefore, a method whereby these 
two types of contribution may be distinguished. 

In the simple case of white noise, the existence 
of a non-zero constant background or noise floor 
is a noteable characteristic which can be used to 
distinguish the deterministic component. More 
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generally, the independent measurement of a time 
series consisting only of the experimental noise 
will enable the calculation of its root mean square 
projections onto the { ci}. By comparing these 
with the corresponding singular values for the time 
series containing the deterministic signal we can 
define a signal-to-noise ratio which may be associ- 
ated with each singular vector. The technique will 
allow the identification of those singular values 
which are noise dominated even when the noise is 
not white. It is not always possible to measure the 
noise separately and for this reason there is inter- 
est in the signal processing community in devel- 
oping so-called cross-validation techniques whereby 
the internal consistency of the data itself may be 
used to estimate the noise level [12]. 

Given that a suitable method has been used to 
partition the singular value spectrum, we move on 
to consider the implied partitioning of the embed- 
ding space. Consider the matrices p(‘): &) = Gijajk, 
which are representations of projection operators 
onto the basis functions { c, }. These may be used 
to construct projection operators onto the corre- 
sponding subspaces of the embedding space: 

Q= c p”‘, (3.14) 
U, = noise 

P= c p”‘. (3.15) 
0, > noise 

Inserting the identity P + Q = 1, into eq. (3.12) 
gives the following: 

X= X+AX, (3.16) 

where 

X= SPZCT (3.17) 

is the deterministic part of the trajectory matrix, 
and 

AX= SQZCr (3.18) 

is the noise-dominated part. This separation allows 
the rejection of a portion of the inherent noise of 

the experiment. In a signal processing context this 
is known as rejection of out-of-band noise. Here it 
amounts to oversampling the data in order to 
average the noise over more points in the window. 

From now on our attention will shift to the 
reduced trajectory matrix X since this contains all 
the information about the deterministic trajectory 
that we can sensibly extract from the experiment. 
A useful form for X may be obtained by substitut- 
ing eq. (3.7) into eq. (3.17): 

x= c (XCi)CT. (3.19) 
0, > noise 

This expression uses only quantities obtainable 
from the diagonalization of the covariance matrix. 
In this form there is an obvious interpretation of 
X which relates directly to the methodology of 
plotting phase portraits. Here CT represents a co- 
ordinate axis of the embedding space referred to 
the standard basis, while (Xc,) is a column vector 
containing a time series of the i th component, in 
the basis { ci}, of the vectors in the trajectory. 

Clearly X is an N X n matrix, however, by 
construction it consists of a trajectory confined to 
the deterministic subspace of W” having dimen- 
sion d s n (where d is the number of the { oi} 
above the noise floor). It is straightforward to 
define vectors restricted to this subspace. We shall 
distinguish these by a square bracket notation. 
Thus, X restricted to the deterministic subspace is 
an N x d rectangular matrix the jth row of which 
is [ x/Tcl, x,Tc,, . . . , x:c,]. In the case that the ex- 
perimental noise is not white it may be necessary 
to relabel the { ci} such that the first d vectors 
span the deterministic subspace. 

3.4. On the choice of time scales 

In the following paragraphs we outline an ap- 
proach to the choice of sampling time, r,, and the 
window length, r,,,, so that the formalism devel- 
oped above can be applied to time series data. It is 
more usual in the method of delays to consider the 
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choice of embedding dimension rather than the 
window length. However, the window length has 
particular significance in the singular system anal- 
ysis since it determines the form of the singular 

spectrum. 
Before we can consider the effect of the window 

length on the form of the singular spectrum, we 
must first establish a sampling criterion. Observe 
that for fixed rW increasing n by decreasing 7s 
generates additional singular vectors capable of 
describing more rapid variations within the 
window. The corresponding singular values will, as 
we have said earlier, represent the “power” in the 
time series which corresponds to such variations. 
On physical grounds one can assume the existence 
of an inner time scale. Over times less than this 
inner scale the data does not vary significantly to 
within the precision of the measurement. In this 
case decreasing 7s further results in additional 
singular vectors with singular values in the noise 
floor defined by the precision of the experiment. 
At this point we say the spectrum has converged. 
Therefore, a natural choice for rs for a given Q, is 
that necessary to achieve convergence of the singu- 
lar spectrum. 

Having determined a sampling time that ensures 
a convergent spectrum, we now consider how 7W 
affects the form of the spectrum. Clearly, as T_, is 
decreased we approach the inner scale for which 
there is no measureable variation of the data within 
the window. The singular spectrum is thus reduced 
to a triviality. On the other hand as 7W is increased 
the information to be represented within the 
window increases. This has the corresponding effect 
of increasing the number of significant singular 
values. Indeed in the limit 7,+, + cc it can be shown 
that our method becomes a discrete Fourier trans- 
form [13]. Clearly, it is important to have a crite- 
rion for the choice of T_,. 

Takens, in his proof of the theorem given in 
section 2, required on generic grounds the exclu- 
sion of data with interger periods less than TV. It 
can be shown that for realistic measurements the 
generic argument is too weak. However, it is sufh- 
cient, for band-limited data, to replace this with a 

constraint on 7W: 

rw IT*, (3.20) 

where r * = 2 n/w* and w* is the band-limiting 
frequency. By band-limited data we mean here 
that the Fourier spectrum of the time series con- 
tains no frequencies with significant power greater 
than a cutoff frequency known as the band-limit. 
Furthermore, there is an obvious lower bound on 

%J* 

7W 2 (2m + 1)~~. (3.21) 

Since m is unknown, however, the only consistent 
a priori estimate is rW = r*. 

The above arguments provide a self-consistent 
approach to the choice of a sampling time and 
window length which will satisfy the postulates of 
Takens’ theorem. In our limited experience the use 
of 7_, = 7* has proved satisfactory. However, it 
must be emphasized that the derivation of this 
estimate for lW used a sufficient condition which in 
some circumstances may prove to be too strong. A 
complete answer to this problem must circumvent 
a fundamental limitation of Takens’ theorem: the 
implicit assumption of data with infinite precision. 
It is clear from the above analysis that it is neces- 
sary to specify two quantities-the embedding di- 
mension and a time scale (7, or 7,). It is equally 
clear that Taken& theorem makes no mention of a 
time scale. This is due to an assumption that 
successive measurements contain new information 
whatever the time interval between them. For finite 
precision measurements this is manifestly untrue. 
Thus it is insufficient merely to require 2m + 1 
measurements to specify an embedding-a time 
scale is also required. It should be emphasized that 
this problem exists for all data analysis techniques 
that rely on the construction of an embedding 
(e.g., entropy and dimension calculations using 
time series data). Theoretically the problem is still 
open; in practice the effects of sampling and 
window length on the results should be investi- 
gated. 



228 D.S. Broomhead and G.P. King/ Qualitative dynamics from experimental data 

3.5. Concluding comments 

The derivation of a coordinate system by di- 
agonalizing a covariance matrix is known as the 
Karhunen-Loeve method [13] and is widely known 
in the signal processing and pattern recognition 
fields. One feature of a basis obtained in this way 
is that it produces an optimum compression of 
information. By this we mean that in order to 
distinguish points in a set of interest (in this case 
the trajectory in R”) to within a given accuracy 
the Karhunen-Loeve basis requires the fewest 
components to be specified. Thus, for a fixed em- 
bedding dimension the error produced by pro- 
jecting onto the first Y basis vectors is, when 
averaged over the set, minimized if the first. v 

singular vectors are used. This suggests a sys- 
tematic sequence of coarse grainings - the small 
scale limit of which is the grain size set by the 
noise as measured by the noise floor of the singu- 
lar value spectrum. In contrast the standard basis 
for W ” - the one implicit in a naive implementation 
of the method of delays-gives the worst possible 
information compression since for long times the 
rms projections of the trajectory onto the basis 
vectors are all equal. 

model [16]. Applications to experimental data will 
appear elsewhere [17]. 

The Lorenz model is defined by the equations 

+J(Y-X), 

grx- Y-xz, 

dZ 
dt= -bZ+XY. 

In this work the equations were solved with a 
fourth-order Runge-Kutta routine using a step 
size of either 0.003 or 0.009. When the parameters 
take on the values u = 10, b = S/3, and r = 28, the 
system produces turbulent dynamics. The time- 
evolution is organized by two unstable foci and an 
intervening saddle point. Fig. 4 shows a projection 
of the phase-space orbit of the system onto the 
XY-plane. The study of the continuous system can 
be replaced by the study of a discrete dynamical 
system known as the PoincarC map. This is ob- 
tained by recording the intersections of the trajec- 
tory with a surface of section oriented transverse 
to the flow. The surface of section shown in fig. 5a 

An additional consequence of deriving a basis 
by diagonalization of the covariance matrix is that 
orthogonality in the embedding space is related to 
the statistical properties of the time series. An 
outcome of this is that a trajectory, when plotted 
against the { ci}, will appear coherent to the extent 
that it deviates from a gaussian random process. 
This is an important point since it is known that 
deterministic chaos is non-gaussian. The possi- 
bility of using higher multi-point correlation prop- 
erties of the time series to distinguish chaos from 
stochasticity has not to our knowledge been sys- 
tematically investigated [14], although these con- 
cepts do underlie attempts to define dimensions 
and entropies for attracting sets [15]. 

4. Application to the Lorenz model 

In this section we illustrate the singular system Fig. 4. The attractor of the full Lorenz model (u = 10, b = 8/3, 

approach with data obtained from the Lorenz r = 28) projected onto the XY-plane. 
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Fig. 5. (a) The intersection of the attractor of the full Lorenz model (see fig. 4) with a planar surface of section containing the Z-axis 
and passing through the two unstable foci. (b) The corresponding first-return map using the X-coordinates of the points of 
intersection. 

was chosen to contain the two unstable foci and to 
be transverse to their unstable manifolds (it in fact 
contains the Z-axis). An approximately one- 
dimensional first-return map constructed from the 
PoincarC map is shown in fig. 5b. This map has 
been calculated to within a suitable approximation 
[14] and forms a connection between the full sys- 
tem and analytic theory. 

We now turn our attention to the time series of 
the X variable shown in fig. 6a. Using the ap- 
proach outlined in section 3.4, we choose a window 

a 
x 

““I I 1 I 

length by estimating the band-limiting frequency 
of the power spectrum of X(r) shown in fig. 6b. 
This gives a window length of approximately a 
tenth of the period of oscillation about the unsta- 
ble foci [18]. In Lorenz units we have 7w = 0.063. 

Let us now consider the choice of sampling 
time. Fig. 7a illustrates the effect of changing the 
sampling time on the singular value spectrum while 
maintaining the window length at the above value. 
This was done by using a time series, sampled with 
a step size of 0.003, and generating more sparsely 

LORENZ MODEL 

b 

Fig. 6. (a) A sample of the time series X(t) corresponding to motion on the attractor of the full Lorenz model (see fig. 4). (b) The 
corresponding power spectrum constructed from X(t). Frequencies are scaled with the frequency associated with the unstable foci 
U81. 
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Fig. 7. (a) The normalized singular spectra (log,o(oi/Ba,)) obtained from X(r) data of the Lorenz model (see ftg. 6a). The figure 
illustrates the effect of changing the sampling time, rS, for fixed window length, 7W = nr,. Each curve involves the diagonalization of an 
n X n symmetric matrix. The matrix elements are obtained from the autocorrelation function of the time series which was calculated 
using - 2 X lo4 data points. The noise floors are a result of numerical noise in the calculations. (b) As with (a), the data were, 
however, passed through a simulated 6-bit A/D converter. Quantization error dominates the noise in this case. 

sampled time series from it. The example shown in 
fig. 7a began with 25 samples within r,t. Omitting 
every other data point gave a time series sampled 
at half the rate and having 13 samples in the 
window. Similarly, taking points at 4, a, i, i, and 
& the original rate gave time series with 9, 7, 5, 4, 
and 3 samples in the window. For sampling rates 
yielding 7 or more points in the window, the 
spectrum has two distinct parts -one part which 
can be associated with the noise floor, and the 
other part which can be associated with the 
deterministic components of the data. The dis- 
tinguishing features of the noise floor are its mag- 
nitude and flatness. The magnitude represents 
rounding errors within the computer as measured 
by the magnitude of spurious negative eigenvalues 
generated by the diagonalization routine. This 
should be contrasted with fig. 7b for which the 

TNote that this implies 7W = 0.075. This choice was made for 
convenience in producing the figure and does not have a 
significant effect on the spectra obtained, cf. figs. 7a and 8. 

data were passed through a simulated 6-bit analog- 
to-digital converter. In this case the noise floor is 
higher since it is dominated by quantization noise. 

It is clear from figs. 7a and b that the form of 
the singular spectrum is insensitive to the range 
of sampling times used. In particular, the effect of 
decreasing rs is essentially to increase the number 
of singular values in the noise floor. On the basis 
of this analysis we choose to work with data 
sampled at intervals rs = 0.009 which implies an 
embedding dimension of 7. This is largely a matter 
of computational ease since our data is very clean. 
With noisy data it is often better to increase the 
sampling rate in order to be able to average over 
more data points within the window. 

The singular value spectrum shown in fig. 8 
results from the above choices of rs and r,,,. It is 
clear from figs. 7a and 8 that the important dy- 
namics will be confined to a 4-dimensional sub- 
space of the embedding space. In the absence of 
any prior knowledge about the system it would be 
necessary to consider the dynamics in this 4- 
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Fig. 8. The singular spectrum and the first three singular vectors obtained from the unquantized X(t) Lorenz data using 7S = 0.009 
and 7w = 77,. (The ordinates of each singular vector plot cover the range [ - 0.5, + 0.51). 

dimensional space. However, since we know that 
the Lorenz attractor can be embedded in a 3- 
dimensional Euclidean space, we shall only con- 
sider the projection onto the subspace spanned by 
the first three singular vectors. These vectors, which 
are shown in fig. 8, have a form reminiscent of 
orthogonal polynomials. In fig. 9 we show the 
projections of the trajectory onto the planes 

spanned by (ci,~), (ci,Q and (c,,+). The 
details of this have been given in section 3.3. We 
interpret the polynomial appearance of the { ci} to 
mean that the components of C:X~ are averaged 
“time derivatives” of the time series. This recalls 
the approach of Packard et al. [l]. An important 
difference, however, is that, unlike the sequences 
of components generated here, the time derivatives 
of the time series are not statistically independent. 
Moreover, time derivatives estimated by finite dif- 
ferences are sensitive to noise since no averaging 
process is involved. 

The projections shown in fig. 9 do not exhibit 
the spurious symmetries inherent in the basic 
method of delays and readily suggest the 3-dimen- 
sional form of the reconstructed attractor. Indeed 

the use of a suitable orthogonal transform enables 
one to generate stereo pairs as shown in fig. 10. 
We believe these to be a valuable tool for the 
development of geometric intuition about attrac- 
tors extracted from experimental data [19]. 

Figures 9 and 10 demonstrate the clear qualita- 
tive relationship between the Lorenz attractor and 
its reconstruction from the X(t) time series. The 
major features which are obviously preserved are 
the number of fIxed points, their stability proper- 
ties, and the disposition of the flow about them. 
The extent of the relationship can be further dem- 
onstrated by constructing a surface of section in 
the embedding space. The surface chosen in fig. 
lla is analogous to that used in fig. 5a-viz., it 
contains the two unstable foci and is transverse to 
their unstable manifolds (and in fact contains the 
c,-axis). The pseudo one-dimensional first-return 
map is shown in fig. llb. We note that the return 
map of fig. llb is indistinguishable from the re- 
turn map in fig. Sb obtained from the full Lorenz 
model. While this result is gratifying, it is unex- 
pected since in-general one expects the two maps 
to be related by a diffeomorphism. 
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a v b 

0” . 

Fig. 9. Plots of the trajectory, X, projected onto the three mutually orthogonal planes spanned by the singular vectors (cl, cl, E, ) 
shown in fig. 8. The i th point on the (c,, ck)-plane is given by (c:x, , clx,). 

The closeness of the two maps can be under- 
stood by considering the form of the singular 
vectors cr and c2 (see fig. 8). Recall that the vector 
x is constructed from a sequence of (seven) con- 
secutive samples qf the time series X(t). There- 
fore, the component cT~ corresponds to the 
average of X(t) in the window, and the compo- 
nent c:x corresponds to an averaged central dif- 
ference approximation to dX(t)/dt. The surface 

of section used in fig. llb is the plane c:x = 0 and 
the coordinate used for the return map is cTx. 
Thus the surface of section picks out turning points 
in X(t) and the return map is constructed from 
the window-averaged value of X(t). On the other 
hand, by inspection of fig. 4 one can see that the 
surface of section chosen for the full Lorenz model 
will intersect the trajectory near its turning points 
in the XY-plane. Since the coordinate used for the 
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J 
Fig. 10. Stereo pairs of X in the subspace spanned by {q, c2, c3} corresponding to the trajectory shown in fig. 9 

return map in fig. 5b was chosen to be X(f), this 
map is close to that shown in fig. llb. Thus the 
apparent congruence of the two maps is a feature 
of the simple example we have taken and should 
not be expected in a more general setting. 

Finally, we illustrate the advantages of the sin- 
gular system approach in extracting qualitative 
dynamics from data corrupted by noise. For this 
we use X(t) data obtained with TV = 0.009 and 
quantized to 6-bits of precision. Fig. 12a shows the 
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Fig. 11. (a) The intersection of the attractor reconstructed from X(r) data with a planar surface of section containing the c,-axis and 
passing through the two unstable foci. (b) The corresponding first-return map using the cl-coordinate of the points of intersection. 
(a = c:x where x is a point on the surface of section.) 
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Fig. 12. (a) A phase portrait constructed by the method of delays with a lag time, 7L = GOT,, using X(t) data obtained with 7S = 0.009 

and quantized to 6-bits of precision. (b) The corresponding first-return map obtained using a surface of section perpendicular to the 
(X(t), X( t + r,))-plane and containing the two unstable foci. 
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a 

Fig. 13. (a) A phase portrait constructed by the singular system method with a window length T,,, = 137, using X(t) data obtained 
with 7S = 0.009 and quantized to 6-bits of precision. Compare with fig. 12a. (b) The corresponding first-return map obtained using a 
surface of section perpendicular to the (c,, c,)-plane and containing the two unstable foci. Compare with fig. 12b. 

phase portrait constructed by the method of delays 
with 7r = 10~ and fig. 12b shows the correspond- 
ing first-return map (which was obtained on a 
surface of section analogous to those used previ- 
ously). The effect of the noise is obvious. These 
figures should be compared with figs. 13a and b 
which have been obtained from the same data 
using the singular system method. Following the 
prescription described in section 3.4, we require a 
window length larger than that obtained previ- 
ously. This is due to the increased level of noise 
which results in a smaller value of w*. For the 
present data the prescription suggests a window 
length of 137,. The singular spectrum for this 
window length and noise level has only three 
singular values above the noise floor, but the forms 
of their corresponding singular vectors are un- 
changed from those shown in fig. 8. The improved 
quality of the phase portrait and first-return map 
is due to the fact that the singular system ap- 
proach generates averages of data within the 
window. In contrast the method of delays uses raw 
(unaveraged) data. 

5. Conclusions 

Dynamical systems theory has provided a lan- 
guage and a point of view for the study of nonlin- 
ear phenomena in physical systems. However, it is 
a geometric theory and hence requires that experi- 
mental results be analysed for geometric informa- 
tion. The work reported here and developed 
elsewhere [20] is intended ultimately to provide the 
experimentalist with statistical tools for qualitative 
analysis. 
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Appendix 

In this appendix we give some practical details 
and timings for the implementation of the method- 
ology presented in this paper. 
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As in section 3, consider a discrete time series of 

an observable, u, of length Nr = N + (n - 1): 

The (k, I)th element of the n x n covariance ma- 
trix , Z, is: 

Sk/=$ 2 Ui+k-lui+/_l. 
i=l 

(A.1) 

It is easy to show that: 

sk+l,l+l = ~k,+;{UN+kvN+,-UkvI~* 64.2) 

Therefore, the time involved in calculating E is 
essentially the time required to calculate the first 
row of this matrix. A typical time for the calcula- 
tion of a 25 x 25 covariance matrix for a data set 
with Nr = 32,768 on a 16-bit laboratory mini- 
computer possessing a floating point hardware unit 
is about 3 minutes. The diagonalization of a ma- 
trix of this size takes only about 10 seconds. 

The amount of data required for the calculation 
of X should follow the usual rules for ensuring the 
convergence of the autocorrelation function of a 
stationary process. Since the purpose at this stage 
is to extract the second-order statistics from 
the time series for the calculation of the 
Karhunen-Loeve basis, the requirement on the 
amount of data is far less formidable than would 
be needed for the calculation of higher-order 
quantities such as Lyapunov exponents, the di- 
mension of the manifold. etc. 
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